Math, asked by omkanpur05, 1 month ago

Q23. If A(5.2). B(2. - 2) and ((-2.t) are the vertices of a right angled triangle with LB = then find
the value of t​

Answers

Answered by mathdude500
3

Given :-

A right-angle triangle ABC right-angled at B having vertices,

  • A (5, 2)

  • B (2, - 2)

  • C (-2, t)

To Find :-

  • The value of 't'.

Formula Used :-

Distance Formula :-

Let us consider a line segment joining the points A and B, then distance between A and B is given by

\sf\:AB =  \sqrt{ {(x_2-x_1)}^{2}  +  {(y_2-y_1)}^{2} }

 \sf \: where \: coordinates \: of \: A \: and \: B \: are \: (x_1,y_1) \:  and \:  (x_2,y_2)

\large\underline{\sf{Solution-}}

The vertices of right-angle triangle are

  • A (5, 2)

  • B (2, - 2)

  • C (-2, t)

↝ Distance between A (5, 2) and B (2, - 2)

↝ We know,

\sf\:AB =  \sqrt{ {(x_2-x_1)}^{2}  +  {(y_2-y_1)}^{2} }

↝ Here,

 \sf \:  \:  \:  \bull \:  \:  \: x_1 =5 , \: y_1 = 2, \: x_2=2, \: y_2= - 2

On substituting the values, we get

\rm :\longmapsto\:AB =  \sqrt{ {(2 - 5)}^{2} +  {( - 2 - 2)}^{2}  }

\rm :\longmapsto\:AB =  \sqrt{ {( - 3)}^{2} +  {( - 4)}^{2}  }

\rm :\longmapsto\:AB =  \sqrt{9 + 16}

\rm :\longmapsto\:AB =  \sqrt{25}

\rm :\longmapsto\:AB =  5 -  -  - (1)

Now,

↝ Distance between B (2, - 2) and C (-2, t)

↝ We know that,

\sf\:BC =  \sqrt{ {(x_2-x_1)}^{2}  +  {(y_2-y_1)}^{2} }

↝ Here,

 \sf \:  \:  \:  \bull \:  \:  \: x_1 =2 , \: y_1 =  - 2, \: x_2= - 2, \: y_2= t

↝ On substituting the values, we get

\rm :\longmapsto\:BC =  \sqrt{ {( - 2 - 2)}^{2} +  {(t + 2)}^{2}}

\rm :\longmapsto\:BC =  \sqrt{ {( -4)}^{2} +  {(t + 2)}^{2}}

\rm :\longmapsto\:BC =  \sqrt{ 16 +  {(t + 2)}^{2}}  -  -  - (2)

Now,

↝ Distance between C (- 2, t) and A (5, 2)

↝ We know that,

\sf\:CA =  \sqrt{ {(x_2-x_1)}^{2}  +  {(y_2-y_1)}^{2} }

↝ Here,

 \sf \:  \:  \:  \bull \:  \:  \: x_1 =5 , \: y_1 = 2, \: x_2= - 2, \: y_2= t

↝ On substituting the values, we get

\rm :\longmapsto\: CA=  \sqrt{ {( - 2 - 5)}^{2} +  {(t  - 2)}^{2}}

\rm :\longmapsto\: CA=  \sqrt{ {( - 7)}^{2} +  {(t  - 2)}^{2}}

\rm :\longmapsto\:CA =  \sqrt{49 +  {(t  - 2)}^{2}}  -  -  -  - (3)

Now,

↝ As triangle ABC is right-angle triangle right-angled at B.

So,

↝ By Pythagoras Theorem, we have

\rm :\longmapsto\: {CA}^{2}  =  {AB}^{2}  +  {BC}^{2}

↝ On substituting the values of CA, AB and BC, we get

\rm :\longmapsto\:49 +  {(t - 2)}^{2} = 25 + 16 +  {(t + 2)}^{2}

\rm :\longmapsto\:49 +  \cancel{{t}^{2}} + \cancel{4}  -  4t = 41 +   \cancel{{t}^{2}} + \cancel{4} + 4t

\rm :\longmapsto\:8 = 8t

\bf\implies \:t \:  =  \: 1

Additional Information :-

1. Section Formula :-

Section Formula is used to find the coordinates of the line segment joining the points which divides it in the ratio m : n internally,

{\underline{\boxed{\rm{\quad \Big(x, y \Big) = \Bigg(\dfrac{mx_2 + nx_1}{m + n},  \dfrac{my_2 + ny_1}{m + n}\Bigg) \quad}}}}

2. Midpoint Formula :-

Midpoint Formula is used to find the midpoint of line segment joinjng the two points,

{\underline{\boxed{\rm{\quad \Big(x, y \Big) = \Bigg(\dfrac{x_2 + x_1}{2},  \dfrac{y_2 + y_1}{2}\Bigg) \quad}}}}

Similar questions