Math, asked by pratikshmalik31, 11 months ago

Q25. Two regular polygons are
such that the ration between the number of sides is 1:2 and
interior angles is 3:4 Find the number of sides of each polygon.​

Answers

Answered by Anonymous
118

AnswEr :

  • Ratio of Number of Sides of Polygons is 1:2.
  • Ratio of Each Interior Angle of Polygons is 3:4.
  • Find the Number of Sides of Each Polygons.

• Let the Sides be a and, 2a of Polygons.

 \small\boxed{ \bf{Each \:  Interior  \: Angle =  \dfrac{(2 \times \:Side - 4) \times 90 }{Side} }}

Now Let's Head to the Question :

\longrightarrow \sf{ \dfrac{Interior  \: Angle \:  Of  \: Polygon_1}{Interior \:  Angle \:  Of  \: Polygon_2}  =  \dfrac{3}{4} }

\longrightarrow \sf{ \dfrac{ \frac{(2 \times Side_1 - 4) \times  \cancel{90}}{Side_1} }{\frac{(2 \times Side_2 - 4) \times  \cancel{90}}{Side_2}}  =  \dfrac{3}{4} }

\longrightarrow \sf{ \dfrac{ \frac{(2 \times a - 4)}{\cancel{a}} }{\frac{(2 \times 2a - 4) }{2 \cancel{a}}}  =  \dfrac{3}{4} }

\longrightarrow \sf{ \dfrac{(2a - 4) \times 2}{(4a - 4)}  = \dfrac{3}{4} }

\longrightarrow \sf{ \dfrac{(4a - 8)}{(4a - 4)}  = \dfrac{3}{4} }

\longrightarrow \sf{4 \times (4a - 8) = 3 \times (4a - 4)}

\longrightarrow \sf{16a - 32 = 12a - 12}

\longrightarrow \sf{16a - 12a = 32 - 12}

\longrightarrow \sf{4a = 20}

\longrightarrow \sf{a =   \cancel\dfrac{20}{4} }

 \longrightarrow \large\boxed{ \sf{a = 5}}

⋆ Sides of Polygon₁ = a = 5

⋆ Sides of Polygon₂ = 2a = ( 2 × 5 ) = 10

Sides of Polyg are 5 & 10 respectively.

Similar questions