Q28) If d is the HCF of 592 and 252 find x, y satisfying d = 592x + 252y. Also show that x and y are not unique integers.
Answers
Answered by
3
Answer:
4=47*252 - 20*592
Step-by-step explanation:
HCF=2^2=4
By division, we get
592 = 2*252 + 88
252 = 2*88 + 76
88 = 1*76 + 12
76 = 6 * 12 + 4
These equations can be writtemn as
4= 76 - 6*12........(1)
12= 88 - 1*76......(2)
76= 252 - 2*88.....(3)
88=592-2*252.......(4)
Now,
4= 76 - 6*12
4= 76 - 6*(88-1*76) (using (2))
4= 76 - 6*88 + 6*76
4=7*76 - 6*88
4=7*(252-2*88) - 6*88 (using (3))
4=7*252-14*88 - 6*88
4=7*252 - 20*88
4=7*252 - 20*(592-2*252) (using (4))
4=7*252 - 20*592+40*252
4=47*252 - 20*592 which is of the form 592x+252y
Similar questions