Math, asked by aartisingh04071980, 1 month ago

Q3. Rationalize the denominator a) 8 3 sqrt 2 + sqrt 5
8 \div 3 \sqrt{2}  +  \sqrt{5}

Answers

Answered by hukam0685
5

Step-by-step explanation:

Given:

 \frac{8}{3 \sqrt{2} +  \sqrt{5}  }  \\

To find: Rationalization

Solution:

Tip: Identity used in denominator

(a-b)(a+b)=a^2-b^2\\

To do rationalization of the given number,multiply and divide the number by RF of denominator.

 = \frac{8}{3 \sqrt{2} +  \sqrt{5}  } \times  \frac{3 \sqrt{2} -  \sqrt{5}  }{3 \sqrt{2} -  \sqrt{5}  }   \\  \\  =  \frac{8(3 \sqrt{2}  - 5)}{(  {3 \sqrt{2}) }^{2}  - ( { \sqrt{5}) }^{2}  }  \\  \\  = \frac{8(3 \sqrt{2}  - 5)}{18 - 5 }  \\  \\  =  \frac{8(3 \sqrt{2} - 5) }{13}  \\

Final answer:

\red{\frac{8}{3 \sqrt{2} +  \sqrt{5}  } =  \frac{8(3 \sqrt{2} -  \sqrt{5} ) }{13}}   \\

Hope it helps you.

To learn more on brainly:

1) rationalize denominator square root 3 minus one upon square root 3 + 1

https://brainly.in/question/4070585

2) rationalize the denominator 1/(1+√5+√3)

https://brainly.in/question/4122211

Answered by sharmarekha42245
0

Answer:

=

3

2

+

5

8

×

3

2

5

3

2

5

=

(3

2

)

2

−(

5

)

2

8(3

2

−5)

=

18−5

8(3

2

−5)

=

13

8(3

2

−5)

Similar questions