Q3. The value of 3 cos θ + 4 sin θ lies in :
(a) [-5, 5]
(b) (-5, 5)
(c) (-5, 5]
(d) None of these
Answers
Step-by-step explanation:
We know that the maximum value of a cos θ + b sin θ is √(a2 + b2).
Substituting a = 3, b = 4,
√(a2 + b2) = √(9 + 16) = √25 = 5
Therefore, the maximum value of 3 cos θ + 4 sin θ is 5.
Was this answer helpful?
ANSWER:
To Find:
- Value of 3 cos θ + 4 sin θ lies in?
Solution:
To find where the value of 3 cos θ + 4 sin θ lies in, we will find the maximum and minimum values of the expression.
So,
We know that, Maximum Value of (a cos θ + b sin θ) is,
⇒ √(a²+b²)
Here, a = 3 and b = 4. So,
Maximum Value of 3 cos θ + 4 sin θ
⇒ √(3²+4²) ⇒ √(9+16) ⇒ √(25) ⇒ +5 -----(1)
And,
We know that, Minimum Value of (a cos θ + b sin θ) is,
⇒ -√(a²+b²)
Here, a = 3 and b = 4. So,
Minimum Value of 3 cos θ + 4 sin θ
⇒ -√(3²+4²) ⇒ -√(9+16) ⇒ -√(25) ⇒ -5 -----(2)
So, the value of 3 cos θ + 4 sin θ lies in,
⇒ [Minimum Value , Maximum Value]
(We are using square brackets[] because, both the maximum and minimum values are inclusive.)
From (1) & (2),
Hence, the value of 3 cos θ + 4 sin θ lies in,
⇒ [-5 , 5]
(a) [-5, 5] is the answer.
Formula Used:
- Maximum Value of (a cos θ + b sin θ) is, √(a²+b²)
- Minimum Value of (a cos θ + b sin θ) is, -√(a²+b²)