Math, asked by saryka, 2 months ago


Q32. If \sf{\dfrac{2^{m+n}}{2^{m-n}}=16} and \sf{a=2^{\tiny\dfrac{1}{10}}} then \sf{\dfrac{a^{2m+n-p}}{(a^{m-2n+2p})^{-1}}=} _____.​

Answers

Answered by mathdude500
128

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:a =  {\bigg(2 \bigg) }^{\dfrac{1}{10} }

\rm :\longmapsto\:\sf{\dfrac{2^{m+n}}{2^{m-n}}=16}

We know that

\underbrace{ \boxed{ \bf \:  {x}^{m} \div  {x}^{n}  =  {x}^{m - n}}}

So, using this identity, we get

\rm :\longmapsto\: {2}^{m + n - (m - n)}  = 16

\rm :\longmapsto\: {2}^{m + n -m + n}  =  {2}^{4}

\rm :\longmapsto\: {2}^{2n}  =  {2}^{4}

We know,

\bf :\longmapsto\: {x}^{m}  =  {x}^{n} \implies \: m = n

So, using this we get

\rm :\longmapsto\:2n = 4

\bf\implies \:n = 2

Now, Consider

\rm :\longmapsto\:{\dfrac{a^{2m+n-p}}{(a^{m-2n+2p})^{-1}}}

\rm \:  =  \:{\dfrac{a^{2m+n-p}}{(a^{ - m + 2n - 2p})}}

\rm \:  =  \: {a}^{2m + n - p - ( - m + 2n - 2p)}

\rm \:  =  \: {a}^{2m + n - p + m  - 2n  +  2p}

\rm \:  =  \: {a}^{3m  - n  + p }

\rm \:  =  \: {a}^{3m  - 2 + p }

\rm \:  =  \: { { \bigg( \bigg(2} \bigg)^{ \dfrac{1}{10} }  \bigg)}^{3m  - 2 + p }

\rm \:  =  \: {\bigg(2\bigg) }^{ \dfrac{3m - 2 + p}{10} }

Hence,

 \boxed{\bf \: {\dfrac{a^{2m+n-p}}{(a^{m-2n+2p})^{-1}}=}  \: {\bigg(2\bigg) }^{ \dfrac{3m  + p - 2}{10} } }

Answered by MrImpeccable
204

CORRECT QUESTION:

Q32. If \sf{\dfrac{2^{m+n}}{2^{n-m}}=16} and \sf{a=2^{\tiny\dfrac{1}{10}}} then \sf{\dfrac{(a^{2m+n-p})^2}{(a^{m-2n+2p})^{-1}}=} _____.

ANSWER:

Given:

\:\:\bullet\:\:\:\sf\dfrac{2^{m+n}}{2^{n-m}}=16

\:\:\bullet\:\:\:\sf a=2^{\frac{1}{10}}

To Find:

  • Value of:

\sf\dfrac{(a^{2m+n-p})^2}{(a^{m-2n+2p})^{-1}}

Solution:

We are given that,

\implies\sf\dfrac{2^{m+n}}{2^{n-m}}=16

We know that,

\hookrightarrow \dfrac{x^q}{x^r}=x^{q-r}

So,

\implies\sf\dfrac{2^{m+n}}{2^{n-m}}=16

\implies\sf2^{m+n\!\!\!/-n\!\!\!/+m}=16

\implies\sf2^{2m}=2^4

Comparing the powers,

\implies\sf2\!\!\!/m=4\!\!\!/

So,

\implies\sf m=2

Now, we need to find the value of,

\sf\implies \dfrac{(a^{2m+n-p})^2}{(a^{m-2n+2p})^{-1}}

We know that,

\hookrightarrow \dfrac{1}{x^{-1}}=x^1

So,

\sf\implies\dfrac{(a^{2m+n-p})^2}{(a^{m-2n+2p})^{-1}}

\sf\implies(a^{2m+n-p})^2\times(a^{m-2n+2p})

We know that,

\hookrightarrow (x^q)^r=x^{qr}

So,

\implies\sf(a^{2m+n-p})^2\times(a^{m-2n+2p})

\implies\sf(a^{2(2m+n-p)})\times(a^{m-2n+2p})

\implies\sf(a^{4m+2n-2p})\times(a^{m-2n+2p})

\hookrightarrow (x^q)(x^r)=x^{q+r}

\implies\sf(a^{4m+2n-2p})\times(a^{m-2n+2p})

\implies\sf a^{4m+2n-2p+m-2n+2p}

\implies\sf a^{4m+m+2n-2n-2p+2p}

So,

\implies\sf a^{5m}

But, we are also given that,

\implies\sf a=2^{\frac{1}{10}}

So,

\implies\sf a^{5m}

\implies\sf (2^{\frac{1}{10}})^{5m}

\implies\sf 2^{\frac{5m}{10}}

\implies\sf 2^{\frac{m}{2}}

Substituting the value of m, as 2,

We get,

\implies\sf 2^{\frac{2}{2}}

\implies\sf 2^1

\implies\bf 2

HENCE,

\bf\implies\dfrac{(a^{2m+n-p})^2}{(a^{m-2n+2p})^{-1}}=2

Similar questions