Math, asked by kabeer67, 1 year ago

Q33. An arc of length 15 cm subtends an angle of 45° at the centre of a circle. Find in terms of
*, the radius of the circle.​

Answers

Answered by GauravSaxena01
3

Solution:-

Length of arc = 15cm

θ = angle subtended at centre = 45°

Let radius = r cm

arc length = θ / 360°× 2πr

=> 45° / 360° × 2πr

=> 45/ 360 × 2πr = 15

=> r= 15× 360/ 45×2π= 60/π cms

=> Radius= 60/ π cms

=============

@GauravSaxena01


dynamogirl: Happy birthday
dynamogirl: ❤❤❤❤✌✌✌❤❤❤❤
GauravSaxena01: thanks
dynamogirl: wello ❤
dynamogirl: Ok bye !
Answered by Anonymous
0

Answer:

Question:-

the length of a rectangle is 8m more than its breadth if its perimeter is 128m, find its length , breadth and Area

Answer:-

The length of Rectangle is 36 m

The breadth of rectangle is 28 m

The area of Given rectangle is 1008 m².

To find:-

Length and breadth of rectangle

Area of rectangle

Solution:-

Let the breadth be x

Length = 8 + x

Perimeter = 128 m

\boxed{ \large{ \mathfrak{perimeter = 2(l + b)}}}

According to question,

\large{ \tt: \implies \: \: \: \: \: 2(8 + x + x) = 128}

\begin{gathered} \large{ \tt: \implies \: \: \: \: \: 8 + 2x = \frac{128}{2} } \\ \end{gathered}:

\large{ \tt: \implies \: \: \: \: \: 8 + 2x = 64}

\large{ \tt: \implies \: \: \: \: \: 2x = 64 - 8}

\large{ \tt: \implies \: \: \: \: \: 2x = 56}

\large{ \tt: \implies \: \: \: \: \: x = 28}

The breadth of rectangle is 28 m

Length = 8 + x = 28 + 8 = 36 m

\large{ \boxed{ \mathfrak{area = l \times b}}}

\large{ \tt: \implies \: \: \: \: \: area = 28\times 36}

\large{ \tt: \implies \: \: \: \: \: area = 1008 \: {m}^{2} }

The area of Given rectangle is 1008 m².

Similar questions