Math, asked by aditi13gupta, 4 months ago

Q36 A moving boat is observed from the top of a 150m high cliff moving away from the cliff The angle
of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min
(use V3- 1.73)
10

Answers

Answered by GlamorousAngel
62

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Answer :-

 \rm{Let \:  The  \: Speed  \: of \:  The   \: Be  \: 'x \: ' \:  m/min}

 \rm{Distance \:  Covered \:  in \:  2min  \: =  \: 2x }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \red{ \therefore CD= 2x}

 \rm{Let \:  BC \:  Be \:  'y \: '}

 \rm \blue{In \:  \triangle  \: ABC ,}

 \small \rm{</p><p>\dfrac{AB}{BC}=tan60 \degree}

 \small \rm{: \implies \dfrac{150}{y}=√3}

 \small \rm{: \implies y = \dfrac{150}{√3}}

 \small \rm{: \implies y = 50√3  \: ..............\: (1)}

 \rm \blue{In \:  \triangle \: ABD ,}

 \small \rm{\dfrac{AB}{BD}=tan45 \degree}

 \small \rm{: \implies \dfrac{150}{y+2x}=1}

 \small{ \rm{: \implies y+2x = 150  \: ..............\:  (2)}}

 \rm{Substituting \:  the \:  Value  \: of 'y \: '  \: from \:  1  \: and  \: 2 \:  Equn } \:

 \small \rm{: \implies 50√3 + 2x = 150}

 \: \small \rm: \implies 2x = 150 - 50√3

 \: \small \rm: \implies 2x = 50 ( 3 - √3 )

 \: \small \rm: \implies x = 25 ( 3 - √3 )

✦ \:\rm\pink {Speed \:  of  \: The  \: Boat} =\rm{ 25( 3 - √3 ) m/min } \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:\:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   { \frac{</p><p>= 25 ( 3 - √3 ) \times 60}</p><p></p><p>{1000}}

 \rm{: \implies \dfrac {3}{2}( 3 - √3 ) km / hr}

 \: \therefore \rm{ \underline{ \underline \green{ speed  \: of  \: the \:  boat \:  is \:  \:  \dfrac {3}{2}( 3 - √3 ) km / hr }}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:

QueenOfStars: Commendable! :D
GlamorousAngel: Thnku :)
Similar questions