Physics, asked by bhavanasanka14, 10 months ago

Q37 When a beam of white light is incident at
an angle of 30° on a glass slab, the
distance between red and violet rays as
observed on a screen on the other side
of the slab is 0.1 mm. Calculate the
approximate width of the glass slab.
(Note: Use violet = 1.66 and pred = 1.6)

Answers

Answered by roshinik1219
0

Given:

  • Glancing angle = 20 ^\circ
  • \mu_{violet} = 1.66
  • \mu_{red} = 1.6

To Find:

  • The  approximate width of the glass slab.

Solution:

Glancing angle = 20 ^\circ

Therefore, angle of incidence =  90 ^\circ -  20 ^\circ = 70 ^\circ

            sinr_v = \frac{70 ^\circ}{1.66}

             r_v = 34^\circ 30\minute

           sinr_r = \frac{70 ^\circ}{1.6}

          r_r = 36^\circ

we know that,

           l= \frac{tsin(i-r)}{cosr}

   l_v-l_ r = d[\frac{sin(i-r_v)}{cosr_v} - \frac{sin(i-r_r)}{cosr_r}]

        0.1 = d[\frac{sin 35^\circ 30}{cos 34^\circ 30} - \frac{sin 34^\circ}{cos 36^\circ}]

        0.1 = d[\frac{0.5807}{0.8241} - \frac{55.92}{0.8090}]

        0.1 = d[0.71-0.68]

           d = \frac{10}{3} cm

Thus, The  approximate width of the glass slab d = \frac{10}{3} cm

Similar questions