Math, asked by Dillirao9133, 2 months ago

Q4 Find the points of discontinuity, if any, for the function
f(x) = { x2-x-2 / x +1, x not equal to -1
-1 ,X= -1 }

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

➢ Given function is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:f(x) = \begin{cases} &\sf{\dfrac{ {x}^{2}  - x - 2}{x + 1}  \:  \: if \: x \:  \ne \:  -  \: 1} \\ &\sf{ - 1 \:  \: when \: x \:  =  \:  -  \: 1} \end{cases}\end{gathered}\end{gathered}

Now, we have to check the continuity of the function at x = - 1.

We know,

➢ A function f(x) is said to be Continuous at x = a, iff

\rm :\longmapsto\:f(a) = \displaystyle\lim_{x \to a}f(x)

Thus,

Consider,

\rm :\longmapsto\:f( - 1) =  - 1

Consider,

\rm :\longmapsto\:\displaystyle\lim_{x \to  \:  -  \: 1} \: f(x)

\rm \:  =  \:  \: \displaystyle\lim_{x \to  - 1} \: \dfrac{ {x}^{2} - x - 2 }{x + 1}

\rm \:  =  \:  \: \dfrac{ {( - 1)}^{2}  - ( - 1) - 2}{ - 1 + 1}

\rm \:  =  \:  \: \dfrac{1 + 1 - 2}{0}

\rm \:  =  \:  \: \dfrac{0}{0}

\rm \:  =  \:  \: which \: is \: meaningless

So,

\rm \:  =  \:  \: \displaystyle\lim_{x \to  - 1} \: \dfrac{ {x}^{2} - x - 2 }{x + 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to  - 1} \: \dfrac{ {x}^{2} - 2x + x - 2 }{x + 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to  - 1} \: \dfrac{x(x - 2)  + 1( x - 2 )}{x + 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to  - 1} \: \dfrac{(x - 2)( x + 1)}{x + 1}

\rm \:  =  \:  \: \displaystyle\lim_{x \to  - 1}(x - 2)

\rm \:  =  \:  \:  - 1 - 2

\rm \:  =  \:  \:  - 3

\bf :\longmapsto\:\displaystyle\lim_{x \to  \:  -  \: 1} \: f(x) =  - 3

Hence,

\bf :\longmapsto\:\displaystyle\lim_{x \to  \:  -  \: 1} \: f(x) \:  \ne \: f( - 1)

Hence,

\bf :\longmapsto\:f(x) \: is \: not \: continuous \: at \: x =  \:  -  \: 1

Therefore,

\bf :\longmapsto\:Only \: one \: point \: of \: discontinuity.

Similar questions