Math, asked by ThaliaStark07, 9 months ago

Q4. If A = 30°, show that (sin A - cos A)2 = 1 - sin2A​

Answers

Answered by keerthana1026
2

Answer:

(sina-cosa)^2= 1- 2 sinacosa

=1- sin2a

1-sin2a=1-sin60= 2-√3/2

Answered by sare83
0

Step-by-step explanation:

Given to prove:

(sinA - cosA)² = 1 - sin2A

Consider, LHS

(sinA - cosA)²

(∵ (a-b)² = a² + b² - 2ab)

⇒ (sin²A + cos²A - 2sinAcosA)

(∵ sin²A + cos²A = 1 & sin2A = 2sinAcosA )

⇒ 1 - sin2A

⇒ 1 - sin2(30°)             (∵ given A = 30° )

⇒ 1 - sin60°

⇒ 1 - √3/2

⇒ (2-√3)/2

Now, consider RHS

⇒ 1 - sin2A

⇒ 1 - sin2(30°)

⇒ 1 - sin60°

⇒ 1 - √3/2

⇒ (2-√3)/2 = LHS

∴ LHS = RHS

Hence, proved.

HOPE THIS WOULD BE HELPFUL FOR YOU

Similar questions