Q4. If A = 30°, show that (sin A - cos A)2 = 1 - sin2A
Answers
Answered by
2
Answer:
(sina-cosa)^2= 1- 2 sinacosa
=1- sin2a
1-sin2a=1-sin60= 2-√3/2
Answered by
0
Step-by-step explanation:
Given to prove:
(sinA - cosA)² = 1 - sin2A
Consider, LHS
(sinA - cosA)²
(∵ (a-b)² = a² + b² - 2ab)
⇒ (sin²A + cos²A - 2sinAcosA)
(∵ sin²A + cos²A = 1 & sin2A = 2sinAcosA )
⇒ 1 - sin2A
⇒ 1 - sin2(30°) (∵ given A = 30° )
⇒ 1 - sin60°
⇒ 1 - √3/2
⇒ (2-√3)/2
Now, consider RHS
⇒ 1 - sin2A
⇒ 1 - sin2(30°)
⇒ 1 - sin60°
⇒ 1 - √3/2
⇒ (2-√3)/2 = LHS
∴ LHS = RHS
Hence, proved.
HOPE THIS WOULD BE HELPFUL FOR YOU
Similar questions