Math, asked by nirmalalondhe0, 6 hours ago

Q7. Express the complex number in the form of a +ib, if z = 3+2i
---------
1+i

Answers

Answered by anindyaadhikari13
12

\textsf{\large{\underline{Solution}:}}

Given That:

 \rm: \longmapsto z =  \dfrac{3 + 2i}{1 + i}

Rationalizing the denominator, we get:

 \rm: \longmapsto z =  \dfrac{(3 + 2i)(1 - i)}{(1 + i)(1 - i)}

 \rm: \longmapsto z =  \dfrac{3 - 3i + 2i + 2}{1 + 1}

 \rm: \longmapsto z =  \dfrac{5 -i}{2}

 \rm: \longmapsto z =  \dfrac{5}{2}  + \dfrac{ - 1}{2} i

Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

\rm1.\  i^{4n} = 1

\rm2. \ i^{4n+1} = i

\rm3.\  i^{4n+2} = -1

\rm4.\ i^{4n+3} = -i

\rm5.\ (a+bi) +(c+di) = (a + c) + (b+d)i

\rm6. \ (a+bi)-(c+di) = (a-c)+(b-d)i

\rm7.\  (a + bi)(a - bi) = a^{2}+b^{2}

\rm8.\ (a+bi)(c+di)= (ac-bd)+(ad+bc)i

Similar questions