Math, asked by saryka, 3 months ago

⠀⠀⠀
›› Q87. Simplify: \it{\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+....+\dfrac{1}{\sqrt{8}+\sqrt{9}}}

(a) 1
(b) 2
(c) 234
(d) ∞​

Answers

Answered by tennetiraj86
68

Answer:

Option b

Step-by-step explanation:

Given :-

1/(1+√2) + 1/(√2+√3) +...+1/(√8+√9)

To find:-

Simplify the expression ?

Solution:-

Given that

1/(1+√2) + 1/(√2+√3) +...+1/(√8+√9)

We know that

The Rationalising factor of√a+√b = √a-√b

The Rationalising factor of 1+√2 = 1-√2

The Rationalising factor of√2+√3 = √2-√3

The Rationalising factor of√8+√9= √8-√9

On Rationalising the denominator then

[(1-√2)/(1+√2)(1-√2)]+[(√2-√3)/(√2+√3)(√2-√3)]+...

+ [(√8-√9)/(√8+√9)(√8-√9)]

Since (a+b)(a-b) = a^2-b^2

=>[ (1-√2)/(1-2)]+[(√2-√3)/(2-3)]+...+[(√8-√9)/(8-9)]

=> (1-√2)/(-1)+ (√2-√3)/(-1) + ...+ (√8-√9)/(-1)

=> √2-1+√3-√2++...+√9-√8

=> -1+√9

=> -1+3

=> 3-1

=>2

Answer:-

The value of the given expression is 2

Used formulae:-

  • The Rationalising factor of√a+√b = √a-√b

  • (a+b)(a-b) = a^2-b^2

Attachments:
Answered by xMrMortalx
103

Answer:

{\huge{\blue{\texttt{\orange A\red N\green S\pink W\blue E\purple R\red}}}}

(b) 2

Given

  • \it{\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+....+\dfrac{1}{\sqrt{8}+\sqrt{9}}}

To find

  • Simplyfying the expression

Solution

★On rationalising

   =  >  \frac{1}{1 +  \sqrt{2} }  =  \frac{1}{1 +  \sqrt{2} } \times  \frac{1 -  \sqrt{2} }{1 -  \sqrt{2} }

 =  >  \frac{1 -  \sqrt{2} }{ {1}^{2}  -  { \sqrt{2} }^{2} }  =  \frac{1 -  \sqrt{2} }{ - 1}

 =  >  \sqrt{2}  - 1

&

 =  >  \frac{1}{ \sqrt{2} +  \sqrt{3}  }  =  \frac{1}{ \sqrt{2} +  \sqrt{3}  }  \times  \frac{ \sqrt{2}  -   \sqrt{3}  }{ \sqrt{2}   -   \sqrt{3} }

 =  >  \frac{ \sqrt{2} -   \sqrt{3} }{2 - 3}  =  \frac{ \sqrt{2} -  \sqrt{3}  }{ - 1}

 =  >  \sqrt{3 -  \sqrt{2} }

★Similarly

  •  =  >  \frac{1}{ \sqrt{3} +  \sqrt{4}  }  =  \sqrt{4}  -  \sqrt{3}
  •  =  >   \frac{1}{ \sqrt{4}  +  \sqrt{5} }  =  \sqrt{5}  -  \sqrt{4}
  •  =  >  \frac{1}{ \sqrt{5} +  \sqrt{6}  } =  \sqrt{6}   -  \sqrt{5}
  •  =  >  \frac{1}{ \sqrt{6}  +  \sqrt{7} }  =  \sqrt{7}  -  \sqrt{6}
  •  =  >  \frac{1}{ \sqrt{7}  +  \sqrt{8} }   =  \sqrt{8}  -  \sqrt{7}
  •  =  >  \frac{1}{ \sqrt{8}  +  \sqrt{9} }   =  \sqrt{9 }  -  \sqrt{8}

★So now the equation becomes

 =(√2-1)+(√3-√2)+(√4-√3) + (√5 -√4) +(√6-√5)+(√7-√6) + (√8 - √7) + (√9-√8)</p><p>

 =  - 1 +  \sqrt{9}

 =  - 1 + 3 = 2

★Hence

{\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+....+\dfrac{1}{\sqrt{8}+\sqrt{9}}}

 = 2

{\huge{\blue{\texttt{\orange T\red h\green a\pink n\blue k\purple s\red}}}}

Similar questions