Q9.
Prove that : sin^2(n + 1) A – sin^2 nA = sin(2n + 1) A sin A
Answers
Answered by
13
Answer:
Step-by-step explanation:
We know that sin2A – sin2B = sin(A +B) sin(A –B)
HereA =(n + 1)A And B = nA
⇒ LHS: sin2(n + 1)A – sin2nA = sin((n + 1)A + nA) sin((n + 1)A – nA)
= sin(nA +A + nA) sin(nA +A – nA)
= sin(2nA +A) sin(A)
= sin(2n + 1)A sinA = RHS
Hence proved
Answered by
9
Answer:
sin2(n+1)A - sin2nA = sin(2n+1)A.sinA
we have formula sin2a - sin2b =sin(a-b)sin(a+b)
therefore
sin2(n+1)A - sin2nA=sin[(n+1)A+nA].sin[(n+1)A-nA]
=sin(2n+1)A.sinA =RHS
hence proved
Similar questions