Math, asked by mransh73, 9 months ago


Qll Convert rational number
1.325 in P/q form.

Answers

Answered by chhotiroy343
1

Answer:

1.325

=1325/1000

plz mark as brainleast

follow me....❣❣

Answered by gunsagargawai077
0

Step-by-step explanation:

convert rational no. 1.325 bar in p/q form

Solution: To convert Non terminating recurring decimal expansion in the form of P/Q

one have to follow these simple steps

\begin{lgathered}let \: \: x = 1.\overline{325} \\ \\ x = 1.325325325... \: \: \: \: \: eq1\\ \\ now \: recurring \: digits \: are \: three \: \\ so \: multiplied \: eq1 \: with \: 1000 \\ \\ 1000x = 1325.325325325... \: \: \: \: \: eq2 \\ \\ eq2 - eq1 \\ \\ 1000x - x = 1325.325325325...1.325325325... \\ \\ 999x = 1324.0000000.... \\ \\ 999x = 1324 \\ \\ x = \frac{1324}{999} \\ \\\end{lgathered}

letx=1.

325

x=1.325325325...eq1

nowrecurringdigitsarethree

somultipliedeq1with1000

1000x=1325.325325325...eq2

eq2−eq1

1000x−x=1325.325325325...1.325325325...

999x=1324.0000000....

999x=1324

x=

999

1324

Thus,

\begin{lgathered}\blue{\bold{1.\overline{325} = \frac{1324}{999}}} \\ \\\end{lgathered}

1.

325

=

999

1324

Hope it helps you.

Similar questions