QN07: The altitude of a right Ais 7cm less than its base. If the hypotenuse is 13cm.
find the other two sides (7cm)
Answers
Given
The altitude of a right is 7cm less than its base. If the hypotenuse is 13cm.
Find out
Find the other two sides
Solution
★ Let the base of right triangle be x the altitude be (x - 7)
- Hypotenuse = 13 cm
According to the Pythagoras theorem
(hypotenuse)²=(base)²+(perpendicular)²
➟ (13)² = (x)² + (x - 7)²
Apply identity :
(a - b)² = a² + b² - 2ab
➟ 169 = x² + x² + (7)² - 2 × x × 7
➟ 169 = 2x² + 49 - 14x
➟ 169 - 49 = 2x² - 14x
➟ 120 = 2x² - 14x
➟ 2x² - 14x - 120 = 0
➟ 2(x² - 7x - 60) = 0
➟ x² - 7x - 60 = 0
Splitting middle term
➟ x² + 7x - 12x - 60x = 0
➟ x(x + 7) - 12(x + 7) = 0
➟ (x + 7)(x - 12) = 0
Either
➟ (x + 7) = 0
➟ x = - 7
Or
➟ (x - 12) = 0
➟ x = 12
★ Length can't be in negative ★
Hence,
- Base = x = 12 m
- Altitude = (x - 7) = (12 - 7) = 5m
Solution
Let the base of right triangle be x the altitude be (x - 7)
Hypotenuse = 13 cm
(hypotenuse)²=(base)²+(perpendicular)²
(13)² = (x)² + (x - 7)²
169 = x² + x² + (7)² - 2 × x × 7
169 = 2x² + 49 - 14x
169 - 49 = 2x² - 14x
120 = 2x² - 14x
2x² - 14x - 120 = 0
2(x² - 7x - 60) = 0
x² - 7x - 60 = 0
x² + 7x - 12x - 60x = 0
x(x + 7) - 12(x + 7) = 0
(x + 7)(x - 12) = 0
______________
(x + 7) = 0
x = - 7
____________
(x - 12) = 0
x = 12
______________
Base = x = 12 m
Altitude = (x - 7) = (12 - 7) = 5m