Math, asked by Yumieo, 1 year ago

Qs. Prove that 2tan-1 [ { (a-b) / (a+b) }1/2 tan x/2 ] = cos-1{ (b +acos x ) / (a+bcos x) }

Answers

Answered by MaheswariS
2

\textbf{To prove:}

\bf\displaystyle2\,tan^{-1}[\sqrt{\frac{a-b}{a+b}}\frac{1}{2}tan\frac{x}{2}]=cos^{-1}[\frac{b+a\,cosx}{a+b\,cosx}]

\text{Take,}

A=cos^{-1}[\displaystyle\frac{b+a\,cosx}{a+b\,cosx}] .........(1)

\implies\,cosA=\displaystyle\frac{b+a\,cosx}{a+b\,cosx}

\text{we know that,}

\boxed{\bf\;cosA=\frac{1-tan^2\frac{A}{2}}{1+tan^2\frac{A}{2}}\implies\;tan^2\frac{A}{2}=\frac{1-cosA}{1+cosA}}

\displaystyle\,tan^2\frac{A}{2}=\frac{1-(\frac{b+a\,cosx}{a+b\,cosx})}{1+(\frac{b+a\,cosx}{a+b\,cosx})}

\displaystyle\,tan^2\frac{A}{2}=\frac{a+b\,cosx-b-a\,cosx}{a+b\,cosx+b+a\,cosx}

\displaystyle\,tan^2\frac{A}{2}=\frac{(a-b)-(a-b)cosx}{(a+b)+(a+b)cosx}

\displaystyle\,tan^2\frac{A}{2}=\frac{(a-b)[1-cosx]}{(a+b)[1+cosx]}

\displaystyle\,tan^2\frac{A}{2}=(\frac{a-b}{a+b})(\frac{1-cosx}{1+cosx})

\displaystyle\,tan^2\frac{A}{2}=(\frac{a-b}{a+b})tan^2\frac{x}{2}

\text{Taking square root on both sides, we get}

\displaystyle\,tan\frac{A}{2}=\sqrt{\frac{a-b}{a+b}}tan\frac{x}{2}

\implies\displaystyle\frac{A}{2}=tan^{-1}[\sqrt{\frac{a-b}{a+b}}tan\frac{x}{2}]

\implies\displaystyle\,A=2\,tan^{-1}[\sqrt{\frac{a-b}{a+b}}tan\frac{x}{2}]........(2)

\text{From (1) and (2), we get}

\boxed{\bf\displaystyle2\,tan^{-1}[\sqrt{\frac{a-b}{a+b}}\frac{1}{2}tan\frac{x}{2}]=cos^{-1}[\frac{b+a\,cosx}{a+b\,cosx}]}

Find more:

1.2cot inverse(7)+cos inverse (3/5)

https://brainly.in/question/3447900

2.Prove that tan inverse 1/2+tan inverse 1/5=1/2 cos inverse 16/65

https://brainly.in/question/14008410

Similar questions