Math, asked by ajaychauhan708061, 6 months ago

Qs The sides of AB and CD of a
11gm AB CD are
bisuted at E and F. Prove that EBED is a
||gm.​

Answers

Answered by Anonymous
4

Answer:

EBFD is a parallelogram.

Proved below.

Step-by-step explanation:

Given:

Here we are given that the sides AB and CD of a parallelogram ABCD are bisected at E and F.

Now as shown in the figure given below,

AB || DC and AB = DC [ opposite sides of a parallelogram ]

There fore EB || DF and [ E is the mid point of AB ]

Also,

[F is mid point of DC and DC = AB]

Therefore EB || DF and EB = DF

EBFD is a parallelogram. [One pair of opposite sides is parallel and equal]

Hence proved.

Answered by MrAlCoH0L
13

 </p><p>{\huge{\fcolorbox{blue}{black}{\orange{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxeboxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\boxed{\underbrad{\boxed{\boxed {\ce{\overbrace{\mathcal{\blue{\fcolorbox{red}{black}{×}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} </p><p>\boxeboxed </p><p>\underbrad </p><p>\ce </p><p>×</p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>	</p><p> </p><p>

Similar questions