Math, asked by jeselali78, 6 months ago

Quadratic inequality X²-9+18>0

Answers

Answered by artideeptandi
0

Answer:

x sq2 -9x + 18 = (x-3) (x-6) so

x sq2 - 9x + 18=0 when x= 3 and x = 6. since the coefficientif the x sq2 term is positive, x sq2 - 9x + 18 >0 when x E ( - 3) U (6)

Answered by Asterinn
3

 \implies  \sf \: {x}^{2} -9x+18 > 0

Now , -6x-3x = - 9x and (-6x)×(-3x)= 18x²

 \implies  \sf \: {x}^{2} -6x - 3x+18 > 0

 \implies  \sf \: x({x} -6)- 3(x - 6) > 0

 \implies  \sf \: ({x} -3)(x - 6) > 0

\implies  \sf \: ({x} -3)>  0 \:  \:  or \: (x - 6) > 0

\setlength{\unitlength}{1.1mm}\begin{picture}(50,55)\thicklines\put(33.5,15){\line(1, 0){60}}\put(50,13.5){\line(0,1){3}}\put(75,13.5){\line(0,1){3}}\put(47,9){\sf   \:  6}\put(73,9){\sf   \:  3}\put(40,18){ \large\sf + }\put(62,18){\large\sf -}\put(84,18){\sf  + }\end{picture}

Therefore,

 \sf \: x \in (  - \infty ,6) \cup(3 , \infty)

Answer :

 \bf \: x \in (  - \infty ,6) \cup(3 , \infty)

Similar questions