Math, asked by mulakalajaswanth2000, 10 months ago

Quadratic polynomial whose zeroes are 5 and -2

Answers

Answered by pinky27960
9

Step-by-step explanation:

I hope it may help u.........

Attachments:
Answered by gunjanbaidyasl
2

Answer:

Quadratic polynomial whose zeroes are 5 and -2 is k(x² - 3x - 10); where k is constant.

Step-by-step explanation:

Concept: We find the polynomial with given zeroes using the equation;

k ( x² - (Sum of zeroes)x + Product of zeroes); where k is constant

Given: Zeroes of quadratic polynomial;

\alpha = 5

β = -2.

Sum of zeroes of the polynomial = 5 + (-2) = 5 - 2 = 3

Product of zeroes of the polynomial = 5 x (-2) = - 10

Required polynomial is -

k ( x² - (Sum of zeroes)x + Product of zeroes); where k is constant

= k(x² - 3x - 10)

Quadratic polynomial whose zeroes are 5 and -2 is k(x² - 3x - 10); where k is constant.

#SPJ3

Similar questions