quadrilateral with of p(- 3 , 2) q (- 5 , - 5 ) R ( 2 ,- 3) and S ( 4 ,4)is a
Answers
Answer:
2
1
∣x
1
(y
2
−y
3
)+x
2
(y
3
−y
1
)+x
3
(y
1
−y
2
)∣
= \frac{1}{2}| (-5)[-6-(-3)]+(-4)[-3-(-3)]+2[-3-(-6)]|=
2
1
∣(−5)[−6−(−3)]+(−4)[−3−(−3)]+2[−3−(−6)]∣
= \frac{1}{2} | (-5)(-6+3)+(-4)(-3+3)+2(-3+6)|=
2
1
∣(−5)(−6+3)+(−4)(−3+3)+2(−3+6)∣
= \frac{1}{2} | (-5)(-3) + 0 + 2\times 3|=
2
1
∣(−5)(−3)+0+2×3∣
= \frac{1}{2} | 15 + 6 |=
2
1
∣15+6∣
= \frac{1}{2} \times 21 = \frac{21}{2}\: --(1)=
2
1
×21=
2
21
−−(1)
\underline { Finding \:Area\:of \:\triangle PRS }
FindingAreaof△PRS
= \frac{1}{2}| (-5)[-3-2]+2[2-(-3)]+1[-3-(-3)]|=
2
1
∣(−5)[−3−2]+2[2−(−3)]+1[−3−(−3)]∣
= \frac{1}{2} | (-5)(-5)+2\times 5+ 1\times 0 |=
2
1
∣(−5)(−5)+2×5+1×0∣
\begin{gathered}= \frac{1}{2} | 25+10|\\= \frac{35}{2}\:---(2)\end{gathered}
=
2
1
∣25+10∣
=
2
35
−−−(2)
Therefore.,
Area \: of \: PQRS = ar(\triangle PQR)+ar(\triangle PRS)AreaofPQRS=ar(△PQR)+ar(△PRS)
\begin{gathered}= \frac{21}{2} + \frac{35}{2}\\= \frac{21+35}{2}\\= \frac{66}{2}\\= 33\: sq\:units\end{gathered}
=
2
21
+ 235
= 221+35= 266=33squnits