Math, asked by BrainlyTurtle, 2 months ago

#Quality Question

@ Complex Numbers

Show that a real value of x will satisfy the equation :

 \frac{1 - i x}{1 + ix}  = a + ib \\ if \:  \:  \:  \:  \:  \:  \:  \:  \bf  {a}^{2}  +  {b}^{2}  = 1

Answers

Answered by mathdude500
8

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\dfrac{1 - i x}{1 + ix} = a + ib

and

\rm :\longmapsto\:{a}^{2} + {b}^{2} = 1

\large\underline{\sf{To\:Find- }}

The real value of x satisfy the equation if

\rm :\longmapsto\:{a}^{2} + {b}^{2} = 1

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{1 - i x}{1 + ix} = a + ib -  -  - (1)

Taking conjugate on both sides, we get

\rm :\longmapsto\: \overline{ \bigg(\dfrac{1 - i x}{1 + ix} \bigg)}= \overline{a + ib}

We know that,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf \: \overline{\bigg(\dfrac{a_1}{a_2} \bigg)}  \: =  \: \dfrac{\overline{a_1}}{\overline{a_2}}}}

Using this, identity we get

\rm :\longmapsto\:  \dfrac{\overline{1 - i x}}{ \:  \:  \: \overline{1 + ix} \:  \:  \: } = \overline{a + ib}

We know,

If

\rm :\longmapsto\:z = a + ib

then

\rm :\longmapsto\:\overline{z} =\overline{ a + ib} = a - ib

So, using this identity, we get

\rm :\longmapsto\:\dfrac{1 + i x}{1  -  ix} = a  -  ib -  -  - (2)

On multiply equation (1) by (2), we get

\rm :\longmapsto\: \bigg(\dfrac{1 + i x}{1  -  ix} \bigg) \times \bigg(\dfrac{1  -  i x}{1 + ix} \bigg) = (a  -  ib) \times (a + ib)

\rm :\longmapsto\:1 =  {a}^{2} -  {(ib)}^{2}

\rm :\longmapsto\:1 =  {a}^{2} -  {i}^{2} {b}^{2}

As, we know that

\underbrace{ \boxed{ \bf \:  {i}^{2} =  - 1}}

So,

\rm :\longmapsto\:1 =  {a}^{2} +  {b}^{2}

Hence, justified.

Additional Information :-

If a and b are two complex numbers, then

\rm :\longmapsto\:\overline{a + b} \:  =  \: \overline{a}  + \overline{b}

\rm :\longmapsto\:\overline{a  -  b} \:  =  \: \overline{a}   -  \:  \overline{b}

\rm :\longmapsto\:\overline{a b} \:  =  \: \overline{a}  \:  \:  \: \overline{b}

\rm :\longmapsto\:a \: \overline{a} \:  =  \:  { |a| }^{2}

Answered by sharma78savita
15

Answer:

here is your answer hope it helps you

Attachments:
Similar questions