Math, asked by BrainlyTurtle, 2 months ago

#Quality Question
@Complex Numbers and Quadratic Equations
$ Class ----} 11th

Find number such that their sum is 6 and product is 14.

Answers

Answered by SparklingBoy
159

▪Assumption :-

Let the two numbers be α and β.

___________________________

▪Given :-

α + β = 6

and

αβ = 14.

___________________________

▪Solution :-

We have,

 \sf \alpha  +  \beta  = 6 \\  \\  \implies \bf  \beta = 6 -  \alpha  \:  \:  \:  \:.  \:  .\: . \:  \{i \}

Also,

 \bf \alpha  \beta  = 14 \:  \:  \:  \: . \: . \: . \:  \{ii \}

Putting {i} in {ii} We get,

 \alpha (6 -  \alpha ) = 14 \\  \\  \implies 6\alpha  -  { \alpha }^{2}  = 14 \\  \\  \implies { \alpha }^{2}  - 6 \alpha  + 14 = 0

Which is a Quadratic Equations in α.

Using Quadratic Formula,

 \alpha  =  \dfrac{ - ( - 6) \pm \sqrt{( - 6) {}^{2} - 4 \times 1 \times 14 } }{2}  \\  \\  =  \frac{6 \pm \sqrt{36 - 56} }{2}  \\  \\  =  \frac{6 \pm \sqrt{ - 20} }{2}  \\  \\  =  \frac{6 \pm \sqrt{20}  \: i}{2}  \\  \\  =  \frac{6 \pm2 \sqrt{5} \: i }{2}

 \Large\implies \purple{\underline{ \boxed{ \bold{ \alpha  = 3 \pm4 \mathcal{i}}}}}

Putting Value of α in equation {i}

 \text{When}  \:  \:  \alpha = 3 +  \sqrt{5}  \: i \\  \\  \beta  = 3-  \sqrt{5}  \: i

 \text{When} α = 3 -  \sqrt{5}  \: i \\  \\  \beta  = 3 +  \sqrt{5}  \: i

Hence, Two numbers are :-

 3 +  \sqrt{5} \:  i \:  \:  \bold{and} \:  \: 3 -  \sqrt{5}  \: i

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Answered by Anonymous
103

Given that , The sum of number is 6 & the Product of number is 14 .

Need To Find : The two numbers ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider two numbers be α and β

As , We know that,

  • The sum of numbers is 6 .

\qquad \underline {\boxed {\pmb{ \:\maltese \:Sum \:\: of \:\:zeroes \:\:\purple{ \:(\: \alpha + \beta \;)\:} \:: \: }}}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:+\:\beta \:\Big\} \:\: \\\\\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\\dashrightarrow \sf \Big\{ \: \alpha \:+\:\beta \:\Big\}\:\:=\:\:\:\: 6 \\\\ \dashrightarrow \underline {\boxed {\pmb{\pink{ \frak { \: \:\beta \: \:\:=\:\:6 \: - \alpha \:}}}}}\:\:\bigstar \\\\

⠀⠀⠀⠀⠀AND ,

  • The Product of numbers is 14 .

\qquad \underline {\boxed {\pmb{ \:\maltese \:Product \:\: of \:\:zeroes \:\:\purple{ \:(\: \alpha \beta \;)\:} \:: \: }}}\\\\

\dashrightarrow \sf \Big\{ \: \alpha \:\:\beta \:\Big\} \:\: \\\\\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\\\

\dashrightarrow \sf \Big\{ \: \alpha \:\:\beta \:\Big\}\:\:=\:\:\:\:14 \\\\

\dashrightarrow  \: \alpha \:\:\beta \: \:\:=\:\:14 \:\: \\\\ \qquad \underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: Value \:of \:\alpha \::}}\\

 \dashrightarrow  \: \alpha \:\:\:( \: 6 - \alpha \:) \: \:\:=\:\:14 \:\: \\\\

  \dashrightarrow  \: 6\alpha  \:-  \alpha^2 \: \: \:\:=\:\:14 \:\: \\\\  \dashrightarrow  \: 6\alpha  \:-  \alpha^2 \: \:- 14 \:\:=\:\:0 \:\qquad\pmb{\bf Quadratic \:Polynomial }\: \\\\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━

\qquad \qquad \underline{\pmb{\mathbb{\bigstar \:\:QUADRATIC \:\:POLYNOMIAL \:\::\:} \:\sf \alpha^2 - 6 \alpha - 14 }}\\\\

⠀⠀Where ,

  • a = 1 ,
  • b = -6 &,
  • c = - 14 .

As , We know that ,

⠀⠀⠀━ Formula To Calculate zeroes of Quadratic Polynomial :

\qquad \star \:\:\underline {\boxed {{\pmb{\sf{  \:\:QUADRATIC \:POLYNOMIAL \:\:= \:\dfrac{ \: -b  \sqrt{b^2 - 4ac } }{2a } \:  \:\:\:}}}}}\\\\

\qquad:\implies \sf \dfrac{ \: -b  \sqrt{b^2 - 4ac } }{2a } \: \:

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \sf \dfrac{ \: -b  \sqrt{b^2 - 4ac } }{2a } \: \:

\qquad:\implies \sf \dfrac{ \: -(-6)  \sqrt{(-6)^2 - 4(1)(-14) } }{2(1) } \: \:

\qquad:\implies \sf \dfrac{ \: 6  \sqrt{36 - 4(-14) } }{2 } \: \:

\qquad:\implies \sf \dfrac{ \: 6  \sqrt{36 - 56 } }{2 } \: \:

\qquad:\implies \sf \dfrac{ \: 6  \sqrt{-20 } }{2 } \: \:

\qquad:\implies \sf \dfrac{ \: 6  \pm \sqrt{20 } }{2 } i \: \:

\qquad:\implies \sf \dfrac{ \: 6  \pm 2\sqrt{5 } }{2 } i \: \:

: \implies \underline {\boxed {\pmb{\pink{ \frak { \: \alpha =\:\:\:3 + \:\ \:\:\sqrt{5}i \:}}}}}\:\:\bigstar \\\\

As , We know that,

When ,

 \dashrightarrow \: \:\alpha \: \:\:=\:\:\:3 + \:\ \:\sqrt{5}i \: \\\\

Then ,

 \dashrightarrow \: \:\beta \: \:\:=\:\:\:3 - \:\ \:\:\sqrt{5}i \: \\\\

\qquad \therefore \underline {\sf Hence,  \:Two \:numbers \:are \: \pmb{\bf \:3 + \:\ \:\:\sqrt{5}i \:\& \:\:3 \:- \:\:\sqrt{5}i\:}\:, \:respectively \:}\\

Similar questions