Math, asked by BrainlyTurtle, 2 months ago

#Quality Question

@Coordinate Geometry

Q》》
The equation of the common tangent to the Curves,
 {y}^{2}  = 16x \:  \: and \:  \: xy  =  - 4 \:   \:  \:  \bf \: is

Answers

Answered by SparklingBoy
40

 \color{magenta}\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \:  \:  KEY POINT \:  \:  \maltese}}}}

 \mathfrak{ \text{T}he  \:  \: equation  \:  \: of \:  \: tangent \:  \: having \:  \: slope  \:  \: \bf{ m} } \\  \\  \mathfrak{to \:  \: parabola \:  \:  { \bf{y}^{2} = 4ax } \:  \: is }  \\  \\  \bf y = mx +  \frac{a}{m}

  \color{blue} \large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese  \:  \: SOLUTION \:  \:  \maltese}}}}

 \mathfrak{Given \: \: eq {}^{n}  \: \:  of \:  \: the \:  \: curves \:  \: are} \\  \\  \bf  {y}^{2}  = 16x \:  \: ( \mathfrak{ Parabola}) \:  \:  \: ...(i) \\  \\  \bf xy =  - 4( \mathfrak{Rectangualar \: H \text{y}perbola)}...(ii)

 \mathfrak{Eq {}^{n} \:  \: of \: \:  tangent \:  \: having \: \:  slope \:  \:  \bf {m}  } \\   \mathfrak{to \:  \: given \:  \: parabola \:  \: is}  \\  \\  \bf y = mx +  \frac{4}{m}  \:  \:  \: ...(iii)

Now eliminating y from equations (ii) and (iii)

  \large\mathcal{We \:  \:  Get}

x (mx +  \frac{4}{m} ) =  - 4 \\  \\  \implies  \bf \boxed{ \boxed{{{mx}^{2}  +  \frac{4}{m} x + 4 = 0}}} \bf \:  \:  \: ...(iv)

It will give the points of intersection of tangent and rectangular hyperbola.

 \huge \mathcal{As}

Line (iii) is also a tangent to the rectangular hyperbola.

And there will be only one point of intersection.

 \therefore \mathfrak{ \text{d}iscriminant \:  \: of \:  \: the \:  \: quadratic \:  \:  {eq}^{n}  \:  \:  \bf{(iv)}} \\   \large\mathfrak{should \:  \: be \:  \: zero}

  \implies\sf D =  {( \frac{4}{m}) }^{2}  - 4(m)(4) = 0 \\  \\  \implies  \sf m {}^{3}  = 1 \\  \\  \implies  \red{ \boxed{ \boxed{ \bf m = 1}}}

\large\mathfrak{So, \:  Eq^n \:  \:  of \:  \:  reqrd.  \:  \: tangent  \:  \: is } \\ \huge \bf y = x + 4

Answered by BrainlyIshu
6

Solution

 \mathcal{Given \: \: eq {}^{n}s  \: \:  are} \\  \\  \bf  {y}^{2}  = 16x \:  \: \:  \:  \: ...(i) \\  \\  \bf xy =  - 4...(ii)

 \mathcal{Eq {}^{n} \:  \: of \: \:  tangent \:  \: having \: \:  slope \:  \:  ' {m} ' } \\   \mathcal{to \:  \: given \:  \: parabola(i) \:  \: is}  \\  \\  \bf y = mx +  \frac{4}{m}  \:  \:  \: ...(iii)

Solving equation (ii) and (iii)

  \large\mathfrak{We \:  \:  Get}

x (mx +  \frac{4}{m} ) =  - 4 \\  \\  \implies  {mx}^{2}  +  \frac{4}{m} x + 4 = 0\:  \:  \: ...(iv)

For required condition:

 { \text{d}iscriminant \:  \: of \:  \: the \:  \: {eq}^{n}  \:  \:  \bf{(iv)}} \\   \large\mathcal{Will \:  \: be \:  \: zero}

   D =  {( \frac{4}{m}) }^{2}  - 4(m)(4) = 0 \\  \\  \implies  \sf m {}^{3}  = 1 \\  \\  \implies  \blue{  \boxed{ \bf m = 1}}

\large\mathcal{So, \:  Eq^n \:  \:  of \: \: tangent  \:  \: is } \\ \ \bf y = x + 4

Similar questions