Math, asked by BrainlyTurtle, 2 months ago

#Quality Question

@Coordinate Geometry

■]] Suppose that the points (h,k) , (1,2) and (-3,4) lie on a line L1. If a line L2 1 passing through the points (h,k) and (4,3) is perpendicular to L1,
Then k/h equals ​

Answers

Answered by SparklingBoy
59

 \large\qquad \qquad \underline{ \pmb {{ \mathbb{ \maltese \: ANSWER :-) \:  \:  \text3 }}}}

   \red{\large\qquad \qquad \underline{ \pmb{{ \mathbb{ \maltese \:  \:  SOLUTION}}}}}

Given points (1,2) , (3,4) and (h,k) are on Line L1,

 \underline\mathcal{ \bigstar So,  \: Slope \:  \:  of \: \:   Line \:  \:  L_1 \: \:   is } \\  \\  m_1=   \dfrac{4-2}{-3-1} = \sf  { { }{}  \frac{k - 2}{h - 1} } \\  \\  \implies   \bf m_1 = \bf \frac{ - 1}{2 }  =   \bf\frac{ h- 2}{k - 1}  \\  \\  \implies2(k - 2) =  - 1(h - 1) \\  \\  \implies \boxed{ \boxed{ \bf h + 2k = 5}}...(i)

And

 \underline\mathcal{ \bigstar  \: Slope \:  \:  of \: \:   Line \:  \:  L_2 \: \:joining   }  \\  \underline\mathcal{  points \:  \: (h , k) \: and \:   \: (4,3) \:  \: is} \\  \\  \sf m_2 =  \frac{3 - k}{4 - h}  \\  \\

 \huge \mathcal{As}

 \underline\mathcal{ \maltese \:  Line  \:  \: L_1  \:  \: and  \:  \: L_2 \:  \:  are \:  \:  } \\  \\    \underline\mathcal{ perpendicular  \:  \: to  \:  \: each  \:  \: other}

 \therefore \: m_1m_2 =  - 1

(  - \dfrac{1}{2} ) ( \dfrac{3 - k}{4 - h} ) =  - 1 \\  \\   \implies \boxed{\boxed{\bf2h - k = 5}} ...(ii)

Solving (i) and (ii) we get

(h,k) = (3,1)

 \bf  \dfrac{k}{h}  = \dfrac{1}{3}

Answered by Itzheartcracer
41

Given :-

Suppose that the points (h,k) , (1,2) and (-3,4) lie on a line L1. If a line L2 1 passing through the points (h,k) and (4,3) is perpendicular to L1,

To Find :-

k/h

Solution :-

We know that

\bf Slope = \dfrac{y_2-y_1}{x_2-x_1}

\sf m_1 = \dfrac{4-2}{-3-1} = \dfrac{k-2}{h-1}

\sf m_1 = \dfrac{2}{-4}=\dfrac{k-2}{h-1}

\sf m_1=\dfrac{-1}{2}=\dfrac{k-2}{h-1}

Now

\sf 2(k-2)= -1(h-1)

\sf 2k-4 = -h+ 1

\sf h +2k=5

Now

\sf m_1m_2=-1

\sf\dfrac{-1}{2}\times \dfrac{3-k}{4-h}=1

\sf 2(3-k) = -1(4-k)=-1

\sf 2h-k=5

Now

k/h = 1/3

Similar questions