Math, asked by BrainlyTurtle, 2 months ago

#Quality Question
@Matrices and Determinants

Let

 \theta =  \frac{\pi}{5}


And

 \sf A =  \begin{bmatrix} \sf cos \theta& \sf sin \theta \\   \sf - sin \theta& \sf cos \theta \end{bmatrix}\  \textless \ br /\  \textgreater \


If B = A + A^4
then det(B) is

Answers

Answered by SparklingBoy
217

《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》

▪Given :-

  A =  \begin{bmatrix} \sf cos \theta& \sf sin \theta \\   \sf - sin \theta& \sf cos \theta \end{bmatrix}

And

B=A+A^4

___________________________

▪To Calculate :-

det(B)

___________________________

▪Solution :-

  A =  \begin{bmatrix} \sf cos \theta& \sf sin \theta \\   \sf - sin \theta& \sf cos \theta \end{bmatrix}

So,

 \sf A  {}^{2} =  \begin{bmatrix} \sf cos \theta& \sf sin \theta \\   \sf - sin \theta& \sf cos \theta \end{bmatrix} \\  \\  =  \begin{bmatrix} \sf cos \theta& \sf sin \theta \\   \sf - sin \theta& \sf cos \theta \end{bmatrix} \\  \\  \begin{bmatrix} \sf cos \theta& \sf sin \theta \\   \sf - sin \theta& \sf cos \theta \end{bmatrix} \begin{bmatrix} \sf cos \theta& \sf sin \theta \\    \sf - sin \theta& \sf cos \theta \end{bmatrix} \\  \\  =  \small \begin{bmatrix} \sf cos  {}^{2} \theta -  {sin}^{2} \theta& \sf sin \theta cos \theta  + sin \theta cos \theta \\   \sf - sin \theta cos \theta - sin \theta cos \theta& \sf  -  {sin}^{2}  \theta + cos  {}^{2} \theta \end{bmatrix} \\  \\  =   \begin{bmatrix} \sf cos 2\theta& \sf sin 2\theta \\   \sf - sin2 \theta& \sf cos2 \theta \end{bmatrix}

Similarly,

A {}^{4}  =  \begin{bmatrix} \sf cos 4\theta& \sf sin 4\theta \\   \sf - sin 4\theta& \sf cos4 \theta \end{bmatrix}

As,

Given Matrix

B  = A  + A {}^{4}

So,

 \sf B=  \begin{bmatrix} \sf cos \theta& \sf sin \theta \\   \sf - sin \theta& \sf cos \theta \end{bmatrix}+  \begin{bmatrix} \sf cos 4\theta& \sf sin 4\theta \\   \sf - sin 4\theta& \sf cos4 \theta \end{bmatrix} \\  \\  = \begin{bmatrix} \sf cos \theta +  cos 4\theta& \sf sin \theta +  sin 4\theta \\   \sf  -( sin \theta + sin 4\theta)& \sf cos \theta + cos4 \theta \end{bmatrix}

 \bf   \small\therefore det(B) =  {(cos \theta + cos4 \theta)}^{2}  +  {(sin \theta +  sin4 \theta)}^{2}  \\  \\  =  \sf {cos}^{2}  \theta +   {cos}^{2}  4\theta + 2 cos\theta cos4 \theta \\  +  {sin}^{2}  \theta  \sf+    {sin}^{2}  4\theta + 2 sin\theta sin4 \theta \\  \\  = \sf 2 + 2cos(3 \theta)

 \sf So, at  \:  \theta =  \frac{\pi}{5}  \\  \\  \sf det(B) = 2 + 2cos \frac{3\pi}{5}   \\  \\  =  \sf4 {cos}^{2} ( \frac{3\pi}{10} ) \\  \\  =  \sf4(\frac{ \sqrt{10 - 2 \sqrt{5} } }{4}  \:  {)}^{2}  \\  \\\large \colorbox{lime}{ \underline{\boxed{  \color{magenta}\bf det(B)= \frac{1}{4} (10 - 2 \sqrt{5}  \: )}}}

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:A = \begin{gathered}\begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix}\end{gathered}

So,

\rm :\longmapsto\: {A}^{2} = A \times A

\rm \:  =  \:  \:\begin{gathered}\begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix}\end{gathered} \times \begin{gathered}\begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix}\end{gathered}

\rm \:  =  \:  \:\bigg[ \begin{matrix} {cos}^{2}\theta  -  {sin}^{2}\theta   &sin\theta cos\theta  + cos\theta sin\theta  \\  - sin\theta cos\theta  - cos\theta sin\theta & {cos}^{2}\theta  -  {sin}^{2}\theta\end{matrix} \bigg]

\rm \:  =  \:  \:\bigg[ \begin{matrix} {cos}^{2}\theta  -  {sin}^{2}\theta   &2sin\theta cos\theta  \\  - 2sin\theta cos\theta & {cos}^{2}\theta  -  {sin}^{2}\theta\end{matrix} \bigg]

We know that

\boxed{ \sf{ \: {cos}^{2}x -  {sin}^{2}x = cos2x}}

and

\boxed{ \sf{ \:2sinxcosx = sin2x}}

\rm \:  =  \:  \:\bigg[ \begin{matrix}cos2\theta &sin2\theta  \\  - sin2\theta &cos2\theta  \end{matrix} \bigg]

Thus,

\rm :\longmapsto\: {A}^{2}  =  \:  \:\bigg[ \begin{matrix}cos2\theta &sin2\theta  \\  - sin2\theta &cos2\theta  \end{matrix} \bigg]

Consider,

\rm :\longmapsto\: {A}^{4} =  {A}^{2}  \times  {A}^{2}

\rm \:  =  \:  \:\begin{gathered}\begin{bmatrix} \sf cos 2\theta& \sf sin 2\theta \\ \sf - sin2 \theta& \sf cos2 \theta \end{bmatrix}\end{gathered} \times \begin{gathered}\begin{bmatrix} \sf cos 2\theta& \sf sin 2\theta \\ \sf - sin 2\theta& \sf cos 2\theta \end{bmatrix}\end{gathered}

\rm \: =\bigg[ \begin{matrix} {cos}^{2}2\theta  -  {sin}^{2}2\theta   &sin2\theta cos2\theta  + cos2\theta sin2\theta  \\  - sin2\theta cos2\theta  - cos2\theta sin2\theta & {cos}^{2}2\theta  -  {sin}^{2}2\theta\end{matrix} \bigg]

\rm \:  =  \:  \:\bigg[ \begin{matrix}cos4\theta &sin4\theta  \\  - sin4\theta &cos4\theta  \end{matrix} \bigg]

Thus,

\rm :\longmapsto\: {A}^{4} =  \:  \:\bigg[ \begin{matrix}cos4\theta &sin4\theta  \\  - sin4\theta &cos4\theta  \end{matrix} \bigg]

Now, It is further given that

\rm :\longmapsto\:B = A +  {A}^{4}

\rm :\longmapsto\:B = \begin{gathered}\begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix}\end{gathered} + \:\bigg[ \begin{matrix}cos4\theta &sin4\theta  \\  - sin4\theta &cos4\theta  \end{matrix} \bigg]

\rm :\longmapsto\:B = \begin{gathered}\begin{bmatrix} \sf cos \theta + cos4\theta & \sf sin \theta + sin4\theta  \\ \sf - sin \theta - sin4\theta & \sf cos \theta  + cos4\theta \end{bmatrix}\end{gathered}

So,

\bf :\longmapsto\: |B|

\rm \:  =  \: {(cos\theta  + cos4\theta )}^{2} +  {(sin\theta  + sin4\theta )}^{2}

\rm \:={cos}^{2}\theta+{cos}^{2}4\theta  + 2cos\theta cos4\theta+{sin}^{2}\theta  +{sin}^{2}4\theta+2sin\theta sin4\theta

\rm \:  =  \:  \:1 + 1 + 2(cos\theta cos4\theta  + sin\theta sin4\theta )

\rm \:  =  \:  \:2 + 2cos(4\theta  - \theta )

\rm \:  =  \:  \:2 + 2cos3\theta

\rm \:  =  \:  \:2(1 + cos3\theta)

\rm \:  =  \:  \:2 \times 2 {cos}^{2}\dfrac{3\theta }{2}

\rm \:  =  \:  \:2 \times 2 {cos}^{2}\dfrac{3\pi }{10}  \:  \:  \:  \: \:  \:  \:  \:   \{ \because \:  \theta =  \dfrac{\pi}{5} \}

\rm \:  =  \:  \: 4{cos}^{2}\dfrac{3\pi }{10}  \:

We know,

\boxed{ \sf{ \:cos\dfrac{3\pi}{10} =  \sqrt{\dfrac{10  -  2 \sqrt{5} }{16} }}}

So,

\boxed{ \sf{ \:cos^{2} \dfrac{3\pi}{10} =  \dfrac{10  -  2 \sqrt{5} }{16} }}

On using this value, we get

\rm \:  =  \:  \:4 \times \dfrac{10  -  2 \sqrt{5} }{16}

\rm \:  =  \:  \: \dfrac{10  -  2 \sqrt{5} }{4}

\rm \:  =  \:  \: \dfrac{5 -   \sqrt{5} }{2}

Similar questions