# Quality Question
@Trigonometry
Prove That
Answers
Answered by
322
-------------------------------
To Prove :-
-------------------------------
▪ Formulae Used :-
-------------------------------
▪Proof :-
-------------------------------
-------------------------------
Answered by
177
To Prove :
[cosθ/(1-tanθ)] + [sinθ/(1-cotθ)] = cosθ + sinθ
On taking L.H.S. :
[cosθ/(1-tanθ)] + [sinθ/(1-cotθ)]
(As we know that : tanθ = sinθ/cosθ and cotθ = cosθ/sinθ)
=> [cosθ/(1-sinθ/cosθ)] + [sinθ/(1-cosθ/sinθ)]
=> [cosθ.cosθ/(cosθ-sinθ)] + [sinθ.sinθ/(sinθ-cosθ)]
=> [cos^2θ/(cosθ-sinθ)] - [sin^2θ/(cosθ-sinθ)]
=> [(cos^2θ-sin^2θ)/(cosθ-sinθ)]
[ As we know that : a^2-b^2 = (a+b)(a-b) ]
=> [(cosθ-sinθ)(cosθ+sinθ)/(cosθ-sinθ)]
=> (cosθ+sinθ) = R.H.S.
Hence Proved
__________________________
Hope it helps !!
Similar questions