Hindi, asked by MONSTER20005, 1 month ago

#QualityQuestion @Trigonometry \bf{Prove ~the~ identity~:}Prove the identity : (1 + cos(x) + cos(2x)) / (sin(x) + sin(2x)) = cot(x)​

Answers

Answered by jaivankadi
0

Explanation:

1 +  \cos(x)  +  \cos(2x)  =  \cos {}^{2} ( x )  +  \sin {}^{2} (x)  +  \cos(x)  + cos {}^{2} ( x )   -   \sin {}^{2} (x)  \\  = 2 \cos {}^{2} (x)  +  \cos(x)  =  \cos(x) (2 \cos(x)  + 1)

 \sin(x)  +  \sin(2x)  =  \sin(x)  + 2 \sin(x)  \cos(x) \\  =  \sin(x) (1 + 2 \cos(x) )

(1 + cosx + cos2x) \div (sinx + sin2x)  \\  =  (\cos(x) (1 + 2 \cos(x) )) \div ( \sin(x) (1 + 2 \cos(x) ) \\  =  \cos(x)  \div  \sin(x)  =  \cot(x)

Similar questions