Math, asked by HelpfulQuestioner, 19 days ago

#QualityQuestion
@Trigonometry

 \bf{Prove ~that~:}
sin(105°) = ( sqrt(6) + sqrt(2) ) / 4​

Answers

Answered by shiza7
67

SOLUTION--;

 sin \:(90°+θ)=cos(θ) \:

sin(105°)=cos(15°)=y</p><p></p><p>

cos(2θ)=2cos²(θ)−1

⟹2y² - 1 =    \frac{3}{ \sqrt{2} }

2y²= \frac{3}{ \sqrt{2} }  + 1

y=  \frac{ \sqrt{2 +  \sqrt{3} } }{2} </p><p>

 =  \frac{ \sqrt{3 + 1} }{2 \times  \sqrt[]{2} }

 =  \frac{ \sqrt{6 +  \sqrt{2} } }{4}

Hence proved

Answered by Anonymous
139

To Prove

\sin(105°) =  \frac{ \sqrt{6}  +  \sqrt{2} }{4}  \\

Solution

\sin(105°) = \sin(180° - 105°) = \sin(75°) = \cos(15°)  \\

Now,

 \frac{ \sqrt{3} }{2} = \cos(30°) = \cos(2.15°) = {\cos}^{2}(15°) - {\sin}^{2}(15°) = 2{\cos}^{2} - 1. \\

{\sin}^{2}(105°) = \frac{\frac{\sqrt{3}}{2} + 1}{2} = \frac{\sqrt{3} + 2}{4} = \frac{4\sqrt{3} + 8}{16} \frac{2 + 6 + 2 \sqrt{12} }{16} = \frac{ ({ \sqrt{6}  +  \sqrt{2}  })^{2} }{16} .... (1)  \\

Now, because \sin(105°) &gt; 0 , let us take the positive root of (1)

 \sin(105°) = \sqrt{ \frac{ ({ \sqrt{6} +  \sqrt{2})  }^{2} }{16} } \\

= \sf\green{\frac{\sqrt{6} + \sqrt{2}}{4}}  \\

  \\

#NAWABZAADI

Similar questions