Que : Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that
ar (APB) × ar (CPD) = ar (APD) × ar (BPC).
Answers
Answer:
Solution:
Given: The diagonal AC and BD of the quadrilateral ABCD, intersect each other at point E.
Construction:
From A, draw AM perpendicular to BD
From C, draw CN perpendicular to BD
To Prove: ar(ΔAED) ar(ΔBEC) = ar (ΔABE) ar (ΔCDE)
Proof:
ar(ΔABE) = ½ ×BE×AM………….. (i)
ar(ΔAED) = ½ ×DE×AM………….. (ii)
Dividing eq. (ii) by (i) , we get,
ar(ΔAED)/ar(ΔABE) = [1/2×DE×AM]/1/2×BE×Am]
= DE/BE ………..(iii)
Similarly,
ar(ΔCDE)/ar(ΔBEC) = DE/BE …….(iv)
From eq. (iii) and (iv), we get;
ar(ΔAED)/ar(ΔABE) = ar(ΔCDE)/ar(ΔBEC)
= ar(ΔAED) × ar(ΔBEC) = ar (ΔABE) × ar (ΔCDE)
Hence proved.
Step-by-step explanation:
Let ABCD is a quadrilateral having diagonal AC and BD. These diagonals intersect at point P.
Now area of a triangle = 1/2 * base * height
=> Area(ΔAPB) * Area(ΔCPD) = {1/2 * BP*AM}*{1/2 * PD*CN}
=> Area(ΔAPB) * Area(ΔCPD) = 1/4 * BP*AM* PD*CN .........1
Again
Area(ΔAPD) * Area(ΔBPC) = {1/2 * PD*AM}*{1/2 *CN*BP}
=> Area(ΔAPD) * Area(ΔBPC) = 1/4 * BP*AM* PD*CN ..........2
From equation 1 and 2, we get
Area(ΔAPB) * Area(ΔCPD) = Area(ΔAPD) * Area(ΔBPC)