QUES..ᴛʜᴇ ꜰɪʀꜱᴛ ᴀɴᴅ ᴛʜᴇ ʟᴀꜱᴛ ᴛᴇʀᴍꜱ ᴏꜰ ᴀɴ ᴀᴘ ᴀʀᴇ 10 ᴀɴᴅ 361 ʀᴇꜱᴘᴇᴄᴛɪᴠᴇʟʏ. ɪꜰ ɪᴛꜱ ᴄᴏᴍᴍᴏɴ ᴅɪꜰꜰᴇʀᴇɴᴄᴇ ɪꜱ 9 ᴛʜᴇɴ ꜰɪɴᴅ ᴛʜᴇ ɴᴜᴍʙᴇʀ ᴏꜰ ᴛᴇʀᴍꜱ ᴀɴᴅ ᴛʜᴇɪʀ ᴛᴏᴛᴀʟ ꜱᴜᴍ???
Answers
HERE IS YOUR ANSWER ☞
Given, first term, a = 10
Last term, al = 361
And, common difference, d = 9
al = a + (n −1)d
361 = 10 + (n − 1)9
361 = 10 + 9n − 9
361 = 9n + 1
9n = 360
n = 40
Therefore, total number of terms in AP = 40
Now, sum of total number of terms of an AP is given as:
Sn = n/2 [2a + (n − 1)d]
S40 = 40/2 [2 x 10 + (40 − 1)9]
= 20[20 + 39 x 9]
=20[20 + 351]
=20 x 371 = 7420
Thus, sum of all 40 terms of AP = 7420
Yes!! sure we can be friends
can I get your intro?
Question :
ᴛʜᴇ ꜰɪʀꜱᴛ ᴀɴᴅ ᴛʜᴇ ʟᴀꜱᴛ ᴛᴇʀᴍꜱ ᴏꜰ ᴀɴ ᴀᴘ ᴀʀᴇ 10 ᴀɴᴅ 361 ʀᴇꜱᴘᴇᴄᴛɪᴠᴇʟʏ. ɪꜰ ɪᴛꜱ ᴄᴏᴍᴍᴏɴ ᴅɪꜰꜰᴇʀᴇɴᴄᴇ ɪꜱ 9 ᴛʜᴇɴ ꜰɪɴᴅ ᴛʜᴇ ɴᴜᴍʙᴇʀ ᴏꜰ ᴛᴇʀᴍꜱ ᴀɴᴅ ᴛʜᴇɪʀ ᴛᴏᴛᴀʟ ꜱᴜᴍ
Given :
first term (a) = 10
last term () = 361
Common Difference (d) = 9
To Find :
Number of terms(n) = ?
Total sum () = ?
Formula :
● = a + (n-1)d
● [2a+(n-1)d]
Solution :
= a + (n-1)d
361 = 10 + (n-1)9
361 = 10 + 9n - 9
361 = 1 + 9n
9n = 361 - 1
9n = 360
n = 360/9
n = 40
Number of terms is 40.
[2a+(n-1)d]
[2(10)+(40-1)9]
= 20[20+39×9]
= 20(20 + 351)
= 20×371
= 7420