Math, asked by sakshi4756, 1 year ago

ques: if A+B+C= π , then prove that cos²A+ cos²B-cos²C= 1-2sinA×sinB ×sinC.

Answers

Answered by sinunajla
2

Answer:


Step-by-step explanation:

A + B + C = π

It means these are the angles of a triangle as we know that sum of angles of a triangle is 180°.


Now, Let's consider


2 sinA . sinB . cosC

= sinA (2 sinB.cosC)

= sinA (sin(180-A) + sin(B-C) )

= sinA (sinA + sin(B-C) )

= sin²A + sinA sin(B-C)

= sin²A + {2sinA sin(B-C) / 2}

= sin²A + {cos(A-B+C) - cos(A+B-C) / 2}

= sin²A + {cos(A+C-B) - cos(A+B-C) / 2}

= sin²A + {cos(180-B-B) - cos(180-C-C) / 2}

= sin²A + {cos(180-2B) - cos(180-2C) / 2}

= sin²A - {cos2B + cos2C / 2}

= ( 2sin²A - cos2B + cos2C ) / 2

= 1/2 { 2sin²A - cos2B + cos2C }

= 1/2 { 2sin²A - 1+2sin²B + 1-2sin²C }

=

1/2 { 2sin²A + 2sin²B - 2sin²C }

= sin²A + sin²B - sin²C

= sin²A + sin²B - sin²C = 2 sinA . sinB . cosC

= 1 - cos²A + 1-cos²B -1+cos²C =2sinA.sinB.cosC

= cos²A + cos²B - cos²C

= 1- 2sinA.sinB.cosC


Hence Proved


HOPE IT HELPS!!


Read more on Brainly.in - https://brainly.in/question/3199355#readmore

Answered by Anonymous
3


Step-by-step explanation:

cosC = cos(180−(A+B))  

........ = −cos(A+B)  

........ = −(cosA cosB − sinA sinB)  

........ = sinA sinB − cosA cosB  

LHS = cos²A + cos²B + cos²C  

....... = cos²A + cos²B + (sinA sinB − cosA cosB)²  

....... = cos²A + cos²B + sin²A sin²B − 2 sinA sinB cosA cosB + cos²A cos²B  

....... = cos²A + cos²B + (1−cos²A) (1−cos²B) − 2 sinA sinB cosA cosB + cos²A cos²B  

....... = cos²A + cos²B + 1 − cos²A − cos²B + cos²A cos²B − 2 sinA sinB cosA cosB + cos²A cos²B  

....... = 1 − 2 sinA sinB cosA cosB + 2cos²A cos²B  

....... = 1 − 2 cosA cosB (sinA sinB − cosA cosB)  

....... = 1 − 2 cosA cosB cosC  

....... = RHS

Similar questions