Math, asked by danisheshan34, 7 months ago

Question(1)
2
1
If A = (t2, 2t), B =
S = (1, 0) then
+
2
t2
t
SA
SB
1
B 2.
с 3
D
4​

Answers

Answered by pulakmath007
1

SOLUTION

GIVEN

 \displaystyle \sf{A = ( {t}^{2} , 2t) \:  \: , \:  B =  \bigg( \frac{1}{ {t}^{2} } ,  -  \frac{2}{t}  \bigg) \:,   \: S = (1,0) }

TO CHOOSE THE CORRECT OPTION

 \displaystyle \sf{ \frac{1}{SA} +  \frac{1}{SB} }

A. 1

B. 2

C. 3

D. 4

EVALUATION

Here it is given that

 \displaystyle \sf{A = ( {t}^{2} , 2t) \:  \: , \:  B =  \bigg( \frac{1}{ {t}^{2} } ,  -  \frac{2}{t}  \bigg) \:,   \: S = (1,0) }

∴ SA

 \displaystyle \sf{ =  \sqrt{{( {t}^{2}  - 1)}^{2} +  {(2t - 0)}^{2}  }  }

 \displaystyle \sf{ =  \sqrt{{( {t}^{2}  - 1)}^{2} + 4 {t }^{2}  }  }

 \displaystyle \sf{ =  \sqrt{{( {t}^{2}   +  1)}^{2}   }  }

 \displaystyle \sf{ = ( {t}^{2}   +  1) }

Again

SB

 \displaystyle \sf{ =  {\sqrt{ {\bigg( \frac{1}{ {t}^{2} }  - 1 \bigg)}^{2} +  { \bigg( -  \frac{2}{t}  - 0 \bigg)}^{2}}   }  }

 \displaystyle \sf{ =  {\sqrt{ {\bigg( \frac{1}{ {t}^{2} }  - 1 \bigg)}^{2} +  \frac{4}{ {t}^{2} }  }   }  }

 \displaystyle \sf{ =  {\sqrt{ {\bigg( \frac{1}{ {t}^{2} }   +  1 \bigg)}^{2}   }   }  }

 \displaystyle \sf{ = \bigg( \frac{1}{ {t}^{2} }   +  1 \bigg)  }

 \displaystyle \sf{ = \bigg( \frac{1 +  {t}^{2} }{ {t}^{2} }    \bigg)  }

 \displaystyle \sf{ \therefore \:  \:  \frac{1}{SA} +  \frac{1}{SB} }

 \displaystyle \sf{ =  \frac{1}{ {t}^{2} + 1 } +  \frac{1}{ \displaystyle \sf{\frac{1 +  {t}^{2} }{ {t}^{2} }}  }  }

 \displaystyle \sf{ =  \frac{1}{ {t}^{2} + 1 } + \frac{ {t}^{2} }{ {t}^{2} + 1 }   }

 \displaystyle \sf{ =  \frac{1 +  {t}^{2} }{ {t}^{2} + 1 }   }

 \displaystyle \sf{ =   \frac{ {t}^{2} + 1 }{ {t}^{2} + 1 }   }

 = 1

FINAL ANSWER

The correct option is A. 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=4t/1+t^2, y=3(1-t^2) /(1+t^2), then show that dy/dx=-9x/4y

https://brainly.in/question/18233961

2. radius of curvature of the curve x^2/3 + y^2/3 = a^2/3

https://brainly.in/question/13357557

Similar questions