Physics, asked by BrainlyHelper, 1 year ago

Question 1.3: Check that the ratio ke 2 /G memp is dimensionless. Look up a Table of Physical Constants and determine the value of this ratio. What does the ratio signify?

Class 12 - Physics - Electric Charges And Fields Electric Charges And Fields Page-46

Answers

Answered by abhi178
116
The ratio of electrostatic force to the gravitational force between an electron and proton which is separated r distance from each other is given by
Fe/Fg = {Ke.e/r²}/{GMeMp/r²} = Ke²/GMeMp
∵Ratio of forces is dimensionless . Means, Fe/Fg is dimensionless.
∴ Ke²/GMeMp also will be dimensionless .
Hence, the ratio of Ke²/GMeMp is dimensionless .

Here, K = 9 × 10⁹ Nm²/C²
e = 1.6 × 10⁻¹⁹ C
G = 6.67 × 10⁻¹¹ Nm²/Kg²
Me = 9.1 × 10⁻³¹ Kg
Mp = 1.67 × 10⁻²⁷ Kg

Now, Ke²/GMeMp = {9 × 10⁹ × (1.6 × 10⁻¹⁹)²}/{6.67 × 10⁻¹¹ × 9.1 × 10⁻³¹ × 1.67 × 10⁻²⁷}
= 0.23 × 10⁴⁰ = 2.3 × 10³⁹
Answered by Anonymous
60

Explanation:

\Large{\red{\underline{\underline{\sf{\blue{Solution:}}}}}}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

The given ratio is \sf \dfrac{ke^2}{Gm_ep_e}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

Where,

\sf \hookrightarrow\:G\:=\:Gravitational\:constant

and it's unit is \sf Nm^2kg^{-2}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \hookrightarrow\:m_e\:and\:m_p\:= Masses of Electron and proton

Their unit is kg

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \hookrightarrow e = electric charge

it's unit is C

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \hookrightarrow\: \epsilon_0\:= Permittivity of free space

it's unit is \sf Nm^2C^{-2}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

Therefore, unit of given ration,

\sf \dfrac{ke^2}{Gm_ep_e}\:=\: \dfrac{[Nm^2C^{-2}]\,[C^{-2}]}{[Nm^2kg^{-2}]\,[kg]\,[kg]}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

= \sf M^0L^0T^0

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

Hence the given ratio is Dimensionless

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \hookrightarrow\:e\:=\:1.6\times 10^{-19}C

\sf \hookrightarrow\:G\:=\:6.67\times 10^{-19}C

\sf \hookrightarrow\:m_e\:=\:9.1\times 10^{-31}kg

\sf \hookrightarrow\:m_p\:=\:1.66\times 10^{-27}kg

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

Hence the numerical value of given ratio is

\sf \dfrac{ke^2}{Gm_em_p}\:=\: \dfrac{9\times 10^9\times (1.6\times 10^{-19})^2}{6.67\times 10^{-11}\times 9.1\times 10^{-3}\times 1.6\times 10^{-22}}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\sf \approx\,2.3\times 10^{39}

 ‎ ‎ ‎ ‎ ‎ ‎ ‎

\hookrightarrow This is the ratio of electric force to the gravitational force between a proton and an electron, keeping distance between them constant

Similar questions