Math, asked by nancy359, 1 month ago

Question 1:-

Cos A - Sin A+ 1 / Cos A + Sin A- 1 = Cosec A + Cot A , Using identity cosec² A = 1 + cot² A

Note:- Solve in copy
no spam​

Answers

Answered by ripinpeace
15

Step-by-step explanation:

★Given

  •  \rm{ \dfrac{ cosA  - sinA + 1}{cos  A + sin A  - 1} }

★To prove -

  •  \rm{Cosec A + Cot A}

★Concept -

  • Here, we'll use the trigonometric identity cosec² A = 1 + cot² A to solve the question. Let's do it!!

Solution -

L.H.S

 \longmapsto\rm{ \dfrac{ cosA  - sinA + 1}{cos  A + sin A  - 1} }

 \longmapsto\rm{ \dfrac{  \dfrac{cosA  - sinA + 1}{sin A } }{ \dfrac{cos  A + sin A  - 1}{sin A } } }

 \longmapsto  \rm{ \dfrac{cot  A - 1 + cosec A }{cot  A + 1 - cosec A } }

 \boxed{ \longmapsto  \rm{ \dfrac{cot  A + cosec A - (cosec ^{2}A - cot ^{2}  A) }{cot  A + 1 - cosec A } }}

∵ cosec²A = 1 + cot² A

=> cosec²A - cot²A = 1

{ \longmapsto  \rm{ \dfrac{cot  A + cosec A -  [ (cosec A  + cot A)  (cosec A   -  cot A)] }{cot  A + 1 - cosec A } }}

{ \longmapsto  \rm{ \dfrac{(cosec A  + cot A)  \cancel{ (1 - cosec A    +   cot A)] }} { \cancel{cot  A + 1 - cosec A } }}}

 \longmapsto  \rm{ \bf \underline \orange{cosec A  + cot A  = R.H.S}}

Attachments:
Similar questions