Math, asked by BrainlyHelper, 1 year ago

"Question 1 Factorise the following expressions. (i) a^2 + 8a + 16 (ii) p^2 − 10p + 25 (iii) 25m^2 + 30m + 9 (iv) 49y^2 + 84yz + 36z^2 (v) 4x^2 − 8x + 4 (vi) 121b^2 − 88bc + 16c^2 (vii) (l + m)^2 − 4lm (Hint: Expand (l + m)^2 first) (viii) a^4 + 2a^2b^2 + b^4

Class 8 Factorisation Page 223"

Answers

Answered by nikitasingh79
20

Factors:

In a product of two or more expressions each expression is called a factor of the product.

 

Factorization:

The process of writing a given expression as a product of two or more factors is called factorization.


Factorization when an expression is a complete square:

In this case we use the following formula

1.      a²+2ab+b²= (a+b)²

2.      a²-2ab+b²= (a-b)²

==========================================================

solution:

1) a² + 8a + 16
= a² + 2×a× 4 +  4²


[(a+b)²= a² +b² +2 ab]

    =(a+4)²


2)  p² – 10 p + 25
= p²-  2×p× 5 +  5²


(a-b)²= a² +b² -2 ab   

=(p-5)²


3) 25m² + 30m + 9
= (5m)² + 2×5m× 3 +  3²


[(a+b)²= a² +b² +2ab]

    =(5m+3)²


4) 49y² + 84yz + 36z²
= (7y)² + 2×7y× 6z +  (6z)²


[(a+b)²= a² +b² +2 ab ]

=(7y+6z)²


5) 4x² – 8x + 4
= (2x)² -  2×2x× 2 +  2²


[(a-b)²= a² +b² -2 ab]

   =(2x-2)²
= [2(x-1)² ] = 4(x-1) ²


6) 121b² – 88bc + 16c²
= (11b)² - 2×11b× 4c +  (4c)²


[(a-b)²= a² +b² -2 ab]

    =(11b-4c)²


7) (l + m) ² – 4lm
=l² + m² +2lm -4lm

= l² + m² -2lm


[a-b)²= a² +b² -2ab]

    =(l-m)²


8) a⁴ + 2a²b² + b⁴
= (a²)² + 2a²b²+(b²)²


[(a+b)²= a² +b² +2 ab ]

=(a²+b²)²

=========================================================

Hope this help you...

Answered by aditimane67
0

Answer:

nikita singh her answers are correct

Similar questions