Math, asked by BrainlyHelper, 1 year ago

"Question 2 Factorise (i) 4p^2 − 9q^2 (ii) 63a^2 − 112b^2 (iii) 49x^2 − 36 (iv) 16x^5 − 144x^3 (v) (l + m)^2 − (l − m)^2 (vi) 9x^2y^2 − 16 (vii) (x^2 − 2xy + y^2) − z^2 (viii) 25a^2 − 4b^2 + 28bc − 49c^2

Class 8 Factorisation Page 223"

Answers

Answered by nikitasingh79
24

Factors:

In a product of two or more expressions each expression is called a factor of the product.

 

Factorization:

The process of writing a given expression as a product of two or more factors is called factorization.


Factorisation when a binomial is the difference of two squares:

In this case we use the formula

a² - b² = (a+b)(a-b)

 

Factorization when an expression is a complete square:

In this case we use the following formula

1.      a²+2ab+b²= (a+b)²

2.      a²-2ab+b²= (a-b)²

=========================================================

Solution:

 

1)  4p² – 9q²


=(2p)²–(3q)²


[a²- b²=(a+b)(a-b)]

=(2p-3q)( 2p+3q)


2) 63a² – 112b²


= 7( 9a² -16b²)

=7[ (3a)² –(4b)²]


[a²- b²=(a+b)(a-b)]

=7(3a-4b)( 3a+4b)


3) 49x² – 36
=(7x)² –(6)²


[a²- b²=(a+b)(a-b)]

=(7x-6)( 7x+6)

 


4) 16x^5-144x³
= 16x³(x²-9)

= 16x³(x² - 3²)

[a²- b²=(a+b)(a-b)]

= 16x³(x+3)(x-3)


5) (l + m) ² – (l – m) ²


= [ l+m +l-m][l+m-l+m]


[a²- b²=(a+b)(a-b)]

=2l×2m


=4lm


6) 9x² y² – 16

(3xy)² - 4²

[a²- b²=(a+b)(a-b)]

= (3xy-4)(3xy+4)


7) (x² – 2xy + y²) – z²


=  (x-y)² –z²

 [ (a-b)²= a²+b² -2 ab]
[a² –b² = (a-b)(a+b)]

= (x-y+z)(x-y-z)


8) 25a² – 4b² + 28bc – 49c²


Factorizing each tem
= (5a)² –(2b)² + 2×2b×7c –(7c)²

Rearranging the terms


=(5a)²–[(2b)² - 2×2b×7c +(7c)²]


 as [(a-b)²= a²+b²-2 ab]


=(5a)² –(2b-7c)²

[a²- b²=(a+b)(a-b)]

=(5a-2b+7c)(5a+2b-7c)

==========================================================

Hope this help you...

Similar questions