Math, asked by SonuSoodVerma, 5 months ago

Question 1

find the curved surface area or lateral surface area of a cylinder whose height is 14 cm and the radius is 10 cm.





Question 2

find the volume of a cylinder can of height 21 cm and base radius 8 cm​

Answers

Answered by devindersaroha43
0

Answer:

Step-by-step explanation:

Curved surface area of cylinder =2πrh

Given, r=14 cm, π=  

7

22

​  

 and h=10 cm

Curved surface area of cylinder =2×  

7

22

​  

×14×10

=44×2×10

=880 cm

2

The volume of cylindrical can is 4224 cubic cm

Step-by-step explanation:

Height of cylindrical can = 21 cm

Radius of cylindrical can = 8 cm

Volume of cylindrical can =  

Volume of can =  

Volume of can =

Hence The volume of cylindrical can is 4224 cubic cm

#Learn more:

In a cylindrical container , the base radius is 8 cm . If the height of the water level is 20 cm , find the volume of the water in the container

Answered by thebrainlykapil
51

\large\underline{ \underline{ \sf \maltese{ \: Question\: 1:- }}}

  • Find the curved surface area or lateral surface area of a cylinder whose height is 14 cm and the radius is 10 cm.

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

  • Radius ( r ) = \sf\green{ 10cm}
  • Height ( h ) = \sf\green{ 14cm}

\large\underline{ \underline{ \sf \maltese{ \: To\: Find:- }}}

  • The Curved surface Area or Lateral surface Area of a cylinder

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Lateral\: Surface \:Area \: = \:2\pi \: radius \:\times \: height    }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{ 2 \:  \times  \:  \frac{22}{7} \:  \times  \: 10 \: \times  \: 14  }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{ 2 \:  \times  \:  \frac{22}{ \cancel \red7} \:  \times  \: 10 \: \times  \:  \cancel {\red{14} } }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{ 2 \:  \times  \:  22 \:  \times  \: 10 \: \times  \: 2 }} \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{ Lateral\: Surface \:Area\: = \: 880sq.cm  }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese\green{ \: Question\: 2:- }}}

  • Find the volume of a cylinder can of height 21 cm and base radius 8 cm

\large\underline{ \underline{ \sf \maltese\green{ \: Given:- }}}

  • Radius ( r ) = \sf\blue{ 8cm}
  • Height ( h ) = \sf\blue{ 21cm}

\large\underline{ \underline{ \sf \maltese\green{ \: To\: Find:- }}}

  • Volume of the cylinder

\large\underline{ \underline{ \sf \maltese\green{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Volume \: of \: Cyclinder \: = \:\pi \:(radius)^{2}  \:  \times  \: height   }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{   \:  \frac{22}{7} \: \times \:  {(8)}^{2}\:  \times  \: 21   }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{   \:  \frac{22}{7} \:  \times8  \:  \times  \: 8 \:  \times  \: 21   }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{  \:  \frac{22}{ \cancel \red7} \:  \times  \: 8 \: \times  \: 8\: \times \:  \cancel {\red{21} } }} \\

\qquad \quad {:} \longrightarrow \sf{\sf{ 2 \:  \times  \:  22 \:  \times  \: 8\: \times \: 8 \: \times  \: 3 }} \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{ Volume \: of \: Cyclinder\: = \: 4224cu.cm  }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

Answer 1:-

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ L.S.A \: of \: Cyclinder \: =  \underline{\underline{ 880sq.cm}}}\\\end{gathered}\end{gathered}\\

Answer 2:-

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ Volume\: of \: Cyclinder \: =  \underline{\underline{ 4224cu.cm}}}\\\end{gathered}\end{gathered}\\

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions