[ Question ]
1.) Using quadratic formula , solve for 'x'
9x² – 9(a + b)x + (2a² + 5ab + 2b²) = 0
2.) Prove
Answers
refer Attachment For Q.2
1)
9x² – 9(a + b)x + (2a² + 5ab + 2b²) = 0
Comparing with general form of quadratic equation ax² + bx + c = 0.
We get, a = 9, b = -9(a + b) and
c = (2a² + 5ab + 2b²)
now,
b² - 4ac = [-9(a + b)]² - 4 × 9 × (2a² + 5ab + 2b²)
= 81(a² + 2ab + b²) - 36(2a² + 5ab + 2b²)
= 81a² + 162ab + 81b² - 72a² - 180ab - 72b²
= 9a² - 18ab + 9b²
= (3a - 3b)²
•°• b² - 4ac = (3a - 3b)²
•°• √(b² - 4ac) = √((3a - 3b)² .....(1)
Now,
x = [-b +- √(b² - 4ac) ] / 2a
= [- (-9(a + b)) +- √((3a - 3b)²) ] / 2 × 9
= [ 9a + 9b +- (3a - 3b) ] / 18
•°• x = (9a + 9b + 3a - 3b) / 18
or x = [ 9a + 9b - (3a - 3b) ] / 18
•°• x = 3(3a + 3b + a - b) / 18
or x = 3(3a + 3b - a + b) / 18
•°• x = (4a + 2b)/6 or x = (2a + 4b)/6
•°• x = 2(2a + b)/6 or x = 2(a + 2b)/6
•°• x = (2a + b)/3 or x = (a + 2b)/3
Answer:-
x = (2a + b)/3 or x = (a + 2b)/3
ANSWER:
1) x = (2a + b)/3 , x = (a + 2b) / 3
FORMULA USED:
EXPLANATION:(REFER ATTACHMENT)
2) TO PROVE:
FORMULAE:
★ Tan x = Sin x / cos x
★ Sin² x = 1 - cos² x
★ Cos² x = 1 - sin² x
PROOF:
Sin² A cos² B = (1 - cos² A)cos² B
Sin² A cos² B = cos² B - cos² Acos² B
- Sin² B cos² A = - (1 - cos² B)cos² A
Sin² B cos² A = - cos² A + cos² Bcos² A
Sin² A cos² B - Sin² B cos² A = cos² B - cos² A
Cos² B - cos² A = 1 - sin² B - 1 + sin² A
Cos² B - cos² A = sin² A - sin² B