Math, asked by BrainlyHelper, 1 year ago

Question 1 Which of the following pairs of linear equations has unique solution, no solution or infinitely many solutions? In case there is a
unique solution, find it by using cross multiplication method:
(i) x-3y-3=0 (ii) 2x+y=5
3x-9y-2=0 3x+2y=8
(iii) 3x-5y=20 (iv) x-3y-7=0
6x-10y=40 3x-3y-15=0

Class 10 - Math - Pair of Linear Equations in Two Variables Page 62

Answers

Answered by nikitasingh79
18
The general form for a pair of linear equations in two variables x and y is 
a1x + b1y + c1 = 0 ,
a
2x + b2y + c2 = 0 ,

Condition 1: Intersecting Lines
If   a 1 / a 2 ≠  b 1 / b 2  , then the pair of linear equations has a unique solution.

Condition 2: Coincident Lines
If   a 1 / a 2 =  b 1 / b 2 =  c 1 / c 2  ,then the pair of linear equations has infinite solutions.

A pair of linear equations, which has a unique or infinite solutions are said to be a consistent pair of linear equations.

A pair of linear equations, which has  infinite many distinct common solutions are said to be a consistent pair or dependent pair of linear equations.


Condition 3: Parallel Lines
If   a 1/ a 2 =  b 1/  b 2 ≠  c 1 / c 2 , then a pair of linear equations   has no solution.

A pair of linear equations which has no solution is said to be an inconsistent pair of linear equations.

---------------------------------------------------------------------------------------------------

(i) x – 3y – 3 = 0
3x – 9y – 2 =0

on comparing with ax+by+c+0

a1= 1 ,  b1=-3,  c1= -3

a2=3,    b2=-9,     c2= - 2

a1/a2 = 1/3
b1/b2 = -3/-9 = 1/3 
c1/c2 = -3/-2 = 3/2

a1/a2 = b1/b2 ≠ c1/c2

 

the given sets of lines are parallel to each other. 

Therefore, they will not intersect each other and thus, there will not be any solution for these equations.


----------------------------------------------------------------------------------------------------

(ii) 2x + y = 5     ,       2x + y- 5  =0

3x +2y = 8  ,              3x +2y -8 =0 


on comparing with ax+by+c+0

a1= 2 ,  b1=1,  c1= -5

a2=3,    b2=2,     c2= -8

a1/a2 = 2/3
b1/b2 = 1/2 
c1/c2 = -5/-8 = 5/8

a1/a2 ≠ b1/b2

Therefore, they will intersect each other at a unique point and thus, there will be a unique solution for these equations.


formula for cross multiplication method

x/ b 1 c 2 b 2 c 1   =  y/ c 1 a 2 c 2 a 1  = 1/a 1 a 2 1


x / (1)(-8) - (2)(-5) = y / (-5)(3) - (-8) (2) = 1 / (2) (2) - (3) (1)


x/-8-(-10) = y/-15+16 = 1/4-3

x/2 = y/1 = 1/1

Now take  x/2 =1/1   & y/1 = 1/1

∴ x = 2, y = 1.


-----------------------------------------------------------------------------------------------------

(iii) 3x – 5y = 20 ,           3x – 5y - 20  =0    

6x – 10y = 40 ,                       6x -10y -40 =0

on comparing with ax+by+c+0

a1= 3,  b1=-5,  c1= -20

a2=6,    b2=10,     c2= -40

a1/a2 = 3/6 = 1/2
b1/b2 = -5/-10 = 1/2 
c1/c2 = -20/-40 = 1/2

a1/a2 = b1/b2 = c1/c2

Therefore, the given sets of lines will be overlapping each other i.e., the lines will be coincident to each other and thus, there are infinite many solutions .


----------------------------------------------------------------------------------------------------


(iv) x – 3y – 7 = 0
3x – 3y – 15= 0

on comparing with ax+by+c+0

a1= 1 ,  b1=-3,  c1= -7

a2=3,    b2=-3,     c2= -15

a1/a2 = 1/3
b1/b2 = -3/-3 = 1 
c1/c2 = -7/-15 = 7/15

a1/a2 ≠ b1/b2

Therefore, they will intersect each other at a unique point and thus, there will be a unique solution 


formula for cross multiplication method

x/ b 1 c 2 b 2 c 1   =  y/ c 1 a 2 c 2 a 1  = 1/a 1 a 2 1

x / (-3) (-15) - (3)(-7) = y / (-7)(3) - (-15)(1) = 1 / (1)(-3) - (3)(-3)

x/45-(21) = y/-21-(-15) = 1/-3-(-9)
x/24 = y/-6 = 1/6
x/24 = 1/6        &  y/-6 = 1/6
x = 4 and y = -1

∴ x = 4, y = -1.

-----------------------------------------------------------------------------------------------------

Hope this will help you....
Answered by kushalsharma2996
0

Answer:

nahi for this post a reply me and you should

Similar questions