Question 2 (i) For which values of a and b will the following pair of linear equations have an infinite number of solutions?
2x+3y=7
(a-b)x +(a+b)y = 3a + b - 2
(ii) For which value of k will the following pair of linear equations have no solution?
3x+y=1
(2k-1)x + (k-1)y = 2k+1
Class 10 - Math - Pair of Linear Equations in Two Variables Page 62
Answers
The general form of a pair of linear equations
a1x + b1y + c1 = 0 ,
a2x + b2y + c2 = 0
for infinite number of solutions condition use :
a 1/a 2 = b 1/b 2 = c 1/c 2
For no solutions:
a 1/a 2 = b 1/b 2 ≠ c 1/c 2
----------------------------------------------------------------------------------------------------
Solution:
2x + 3y -7 = 0
(a – b)x + (a + b)y – (3a +b –2) = 0On comparing with ax+by+c+0
a1=2, b1=3, c1=-7
a2= a-b , b2= a+b , c2= -(3a+b-2)
a1/a2 = 2/a–b = 1/2
b1/b2 = -7/a+b
c1/c2 = -7/-(3a+b-2) = 7/(3a+b-2)
For infinitely many solutions,a1/a2 = b1/b2 = c1/c2
2/a–b = 3/a+b = -7/-(3a+b+2)
on taking I &II terms
2/a–b = 3/a+b
2(a+b) = 3(a-b)
2a+2b = 3a-3b
2a-3a=3a-2b
-a= -5b
a=5b ......................................(1)
on taking ii &iii terms
3/a+b = -7/-(3a+b+2)
3(3a+b+2) = 7(a+b)
9a+3b-6 = 7a+7b
9a - 7a +3b-7b =6
2a - 4b =6
2(a-2b) = 6
a-2b=3................................................(ii)
putting the value of a from eq 1 in eq ii
a-2b=3
5b-2b=3
3b=3
b=3/3
b=1
put the value of b in eq i
a=5b
a= 5×1
a=5
Hence the required values of a & b are 5 & 1
(ii)
3x + y = 1(2k –1)x + (k –1)y = 2k + 1
a1On comparing with ax+by+c+0
a1=3, b1=1, c1=-1a2= 2k-1 , b2= k-1a+b , c2= -(2k+1)
a1/a2 = 3/2k-1
b1/b2 = 1/k-1 and
c1/c2 = -1/-2k-1 = 1/2k+1
For no solutions,
a1/a2 = b1/b2 ≠ c1/c2
3/2k-1 = 1/k-1 ≠ 1/2k+1
on taking I & ii terms
3/2k-1 = 1/k-1
3(k-1)=2k-1
3k-3 = 2k-1
3k -2k = – 1+3
k = 2
Hence, for k = 2, the given equation has no solution
-------------------------------------------------------------------------------------------------
Hope this will help you....