Math, asked by XxDarkangelxX786, 23 hours ago

Question: #10 [Class 11]

 \mathtt{Find \:  the  \: value \:  of }\:   \\  \mathfrak{ \sum_{n =1} ^{ \infin}  \: \frac{1}{2n - 1} ( \frac{1}{ {9}^{n - 1}  } +  \frac{1}{ {9}^{2n - 1} }  ) }

Answers

Answered by mathdude500
35

\large\underline{\sf{Solution-}}

Given expression is

\mathfrak{  \displaystyle\sum_{n =1} ^{ \infin} \: \frac{1}{2n - 1} \bigg( \frac{1}{ {9}^{n - 1} } + \frac{1}{ {9}^{2n - 1} } \bigg) }

On simplifying the summation by substituting n = 1, 2, 3, ---

\rm \:  =  \: \dfrac{1}{1} \bigg(\dfrac{1}{1}  + \dfrac{1}{9}\bigg) + \dfrac{1}{3} \bigg(\dfrac{1}{9}  + \dfrac{1}{ {9}^{2} }\bigg) + \dfrac{1}{5} \bigg(\dfrac{1}{ {9}^{2} }  + \dfrac{1}{ {9}^{5} }\bigg) +  -  -  -   \infty

can be re-arranged as

\rm \:  =  \: \bigg(1 + \dfrac{1}{3.9}  + \dfrac{1}{5. {9}^{2} }  +  -  -  \infty \bigg) + \bigg(\dfrac{1}{9}  + \dfrac{1}{3. {9}^{3} }  + \dfrac{1}{5. {9}^{5} }  +  -  -  \infty \bigg)

can be further rewritten as

\rm \:  =  \: \bigg(1 + \dfrac{1}{3. {3}^{2} }  + \dfrac{1}{5. {3}^{4} }  +  -  -  \infty \bigg) + \bigg(\dfrac{1}{9}  + \dfrac{1}{3. {9}^{3} }  + \dfrac{1}{5. {9}^{5} }  +  -  -  \infty \bigg)

can be further rewritten as

\rm \:  =  \: 3\bigg(\dfrac{1}{3}  + \dfrac{1}{3. {3}^{3} }  + \dfrac{1}{5. {3}^{5} }  +  -  -  \infty \bigg) + \bigg(\dfrac{1}{9}  + \dfrac{1}{3. {9}^{3} }  + \dfrac{1}{5. {9}^{5} }  +  -  -  \infty \bigg)

We know,

\boxed{\tt{ x + \dfrac{ {x}^{3} }{3}  + \dfrac{ {x}^{5} }{5}  +  -  -  -  \infty  =  \frac{1}{2}log_{e}\bigg(\dfrac{1 + x}{1 - x}  \bigg)  \: }}

So, using this result, we get

\rm \:  =  \: 3 \times \dfrac{1}{2} log_{e}\bigg(\dfrac{1 + \dfrac{1}{3} }{1 - \dfrac{1}{3} } \bigg) + \dfrac{1}{2} log_{e}\bigg(\dfrac{1 + \dfrac{1}{9} }{1 - \dfrac{1}{9} } \bigg)  \\

\rm \:  =  \: \dfrac{3}{2} log_{e}\bigg(\dfrac{\dfrac{3 + 1}{3} }{ \dfrac{3 - 1}{3} } \bigg) + \dfrac{1}{2} log_{e}\bigg(\dfrac{ \dfrac{9 + 1}{9} }{ \dfrac{9 - 1}{9} } \bigg)  \\

\rm \:  =  \: \dfrac{3}{2} log_{e}\bigg(\dfrac{4}{2} \bigg) + \dfrac{1}{2} log_{e}\bigg({\dfrac{10}{8} } \bigg)  \\

\rm \:  =  \: \dfrac{3}{2} log_{e}\bigg(2 \bigg) + \dfrac{1}{2} log_{e}\bigg({\dfrac{5}{4} } \bigg)  \\

We know,

\boxed{\tt{  \:  y \: logx \:  =  \: log {x}^{y} \: }} \\

So, using this result, we get

\rm \:  =  \: \dfrac{1}{2} log_{e}\bigg( {2}^{3}  \bigg) + \dfrac{1}{2} log_{e}\bigg({\dfrac{5}{4} } \bigg)  \\

\rm \:  =  \: \dfrac{1}{2} log_{e}\bigg( 8  \bigg) + \dfrac{1}{2} log_{e}\bigg({\dfrac{5}{4} } \bigg)  \\

\rm \:  =  \: \dfrac{1}{2}\bigg[log_{e}8 \:  +  \:  log_{e}\bigg({\dfrac{5}{4} } \bigg)\bigg] \\

We know,

\boxed{\tt{  \: log_{e}x \:  +  \:log_{e}y \:  =  \: log_{e}xy \: }} \\

So, using this we get

\rm \:  =  \: \dfrac{1}{2}\bigg[ \:  log _{e} \bigg({8 \times \dfrac{5}{4} } \bigg)\bigg] \\

\rm \:  =  \: \dfrac{1}{2} \:  log _{e} 10 \\

Hence,

\rm\implies \:\boxed{\tt{ \mathfrak{  \displaystyle\sum_{n =1} ^{ \infin} \: \frac{1}{2n - 1} \bigg( \frac{1}{ {9}^{n - 1} } + \frac{1}{ {9}^{2n - 1} } \bigg) } = \dfrac{1}{2}log_{e}10 \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\boxed{\tt{  \: log_{e}(1 + x) = x - \dfrac{ {x}^{2} }{2}  + \dfrac{ {x}^{3} }{3} - \dfrac{ {x}^{4} }{4}  +  -  -  -  \infty  \: }}

\boxed{\tt{  \: log_{e}(1 -  x) = -  x - \dfrac{ {x}^{2} }{2}  -  \dfrac{ {x}^{3} }{3} - \dfrac{ {x}^{4} }{4}  -   -  -  -  \infty  \: }}

\boxed{\tt{ log_{e}2 = 1 -  \frac{1}{2} +  \frac{1}{3} -  \frac{1}{4} +  -  -  -  \infty  \: }} \\

Answered by ItzImran
34

 \boxed{ \mathsf{Question-}}

 \color{red}\mathtt{Find \: the \: value \: of }\: \\ \mathfrak{ \sum_{n =1} ^{ \infin} \: \frac{1}{2n - 1} ( \frac{1}{ {9}^{n - 1} } + \frac{1}{ {9}^{2n - 1} } ) }

  \underline\mathrm{Solution:-}

[Photo attached with the answer]

  \color{blue}\boxed{ \mathbf{Final  \: Answer:}}

   \mathsf{= \frac{1}{2} \:   log_{e} ^{10}  }

Attachments:
Similar questions