Math, asked by dev397, 1 year ago

question 12 plzzzzzzzzz answer fast it's urgent and solve without herons formula

Attachments:

Answers

Answered by sampada1804
0

et there is a circle having centre O touches the sides AB and AC of the triangle at point E and F respectively.


Let the length of the line segment AE is x.


Now in ΔABC,


CF = CD = 6 (tangents on the circle from point C)


BE = BD = 6 (tangents on the circle from point B)


AE = AF = x (tangents on the circle from point A)


Now AB = AE + EB


=> AB = x + 8


BC = BD + DC


=> BC = 8+6 = 14


CA = CF + FA


=> CA = 6 + x


Now


s = (AB + BC + CA )/2


=> s = (x + 8 + 14 + 6 +x)/2


=> s = (2x + 28)/2


=> s = x + 14


Area of the ΔABC = √{s*(s-a)*(s-b)*(s-c)}


                          = √[(14+x)*{(14+x)-14}*{(14+x)-(6+x)}*{(14+x)-(8+x)}]


                          = √[(14+x)*x*8*6]


                          = √[(14+x)*x*2*4*2*3]


=> Area of the ΔABC = 4√[3x(14+x)]  .............................1


Now area of ΔOBC = (1/2)*OD*BC


                            = (1/2)*4*14


                            = 56/2


                            = 28


Area of ΔOBC = (1/2)*OF*AC


                            = (1/2)*4*(6+x)


                            = 2(6+x)


                            = 12 + 2x


Area of ΔOAB = (1/2)*OE*AB


                            = (1/2)*4*(8+x)


                            = 2(8+x)


                            = 16 + 2x


Now Area of the ΔABC = Area of ΔOBC + Area of ΔOBC + Area of ΔOAB


=> 4√[3x(14+x)] = 28 + 12 + 2x + 16 + 2x


=> 4√[3x(14+x)] = 56 + 4x


=> 4√[3x(14+x)] = 4(14 + x)


=> √[3x(14+x)] = 14 + x


On squaring bothe side, we get


3x(14 + x) = (14 + x)2


=> 3x = 14 + x                   (14 + x = 0 => x = -14 is not possible)


=> 3x - x = 14


=> 2x = 14


=> x = 14/2


=> x = 7


Hense


AB = x + 8


=> AB = 7+8


=> AB = 15


AC = 6 + x


=> AC = 6 + 7


=> AC = 13


So value of AB is 15 cm and value of AC is 13 cm








dev397: i said Q 12
dev397: not 11
sampada1804: ohh lol wait
dev397: are u sending me 12th question
sampada1804: here you go check!!!!!
Similar questions