"Question 2 Factorise the following expressions (i) 7x − 42 (ii) 6p − 12q (iii) 7a^2 + 14a (iv) −16z + 20z^3 (v) 20l^2m + 30 alm (vi) 5x^2y − 15xy^2 (vii) 10a^2 − 15b^2 + 20c^2 (viii) −4a^2 + 4ab − 4 ca (ix) x^2yz + xy^2z + xyz^2 (x) ax^2y + bxy^2 + cxyz
Class 8 Factorisation Page 220"
Answers
Factors:
In a product of two or more expressions each expression is called a factor of the product.
Factorization:
The process of writing a given expression as a product of two or more factors is called factorization.
Factors of a monomial:
The greatest common factor of 2 or more monomials is the largest common monomial. The largest common monomial is a product of the greatest common factor of the numerical Coefficients and the common variables with smallest powers.
Factorization when a common monomial factor occurs in each term:
An expression can be expressed as a product of the greatest common monomial and the quotient obtained by dividing the given expression by this greatest common monomial.
==========================================================
Solution:
First, we need to factorize each term and then find common factors to factorize the expression
1) 7x-42
= (7×x) – (7×6)
=7(x-6)
2) 6p-12q
= (6×p) – (6×2q)
=6(p-2q)
3) 7a²+14a
=(7×a×a) + (2×7×a)
=7a(a+2)
4) -16z+ 20z³
= -(2 x 2 x 2 x 2 x z) + (2 x 2 x 5 x z x z x z)
= (2 x 2x z) [ - (2 x 2) +( 5 x z x z)]
=4z(-4 +5z²)
5) 20 l² m + 30 a l m
=(2×2×5×l×m×l) + (2×3×5×a×l×m)
=2 x 5lm(2l+3a)
=2 x 5lm(2l+3a)
=10lm(2l+3a)
6) 5 x²y -15 xy²
=(5×x×x×y) + (5×3×x×y×y)
=5xy(x-3y)
7) 10a² -15 b²+20c²
=(2×5×a×a) - (5×3×b×b) + (5×2×2×c×c)
=5(2a²-3b²+4c²)
8) -4a² +4a b-4ca
=(-4×a×a) +(4×b×a) - (4×c×a)
=-4a(a-b+c)
9) x²yz + xy²z +xyz²
=(x×x×y×z) +(x×y×y×z) +(x×y×z×z)
=xyz(x+y+z)
10) ax²y + bxy² +cxyz
=(x×x×y×a) +(x×y×y×b) +(x×y×z×c)
=xy(ax+by+cz)
==========================================================
Hope this will help you....
Answer:
(i) 7x − 42 = 7(x − 6)
(ii) 6p − 12q = 6(p − 2q)
(iii) 7a 2 + 14a = 7a(a + 2)
(iv) − 16z + 20 z 2 = 4z(5z 2 − 4)
(v) 20l 2m + 30alm = 2lm(10l + 15a)
(vi) 5x 2y − 15xy 2 = 5x(xy − 3y 2)
(vii)10a 2 − 15b 2 + 20c 2 = 5(2a 2 − 3b 2 + 4c 2)
(viii) − 4a 2 + 4ab − 4ca = − 4a(a − b + c)
(ix) x 2yz + xy 2z + xyz 2 = xyz(x + y + z)
(x) ax 2y + bxy 2 + cxyz = xyz(ax + by + cz