Math, asked by BrainlyHelper, 1 year ago

"Question 2 Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases: (i) p(x) = 2x^3 + x^2 − 2x − 1, g(x) = x + 1 (ii) p(x) = x^3 + 3x^2 + 3x + 1, g(x) = x + 2 (iii) p(x) = x^3 − 4x^2 + x + 6, g(x) = x − 3

Class 9 - Math - Polynomials Page 43"

Answers

Answered by nikitasingh79
8

If (x-a) is a factor of p(x)  then p(a)= 0

 If (x+a) is a factor of p(x)  then p(-a)= 0

 If (ax-b) is a factor of p(x)  then p(b/a)= 0

 If (x-a) (x-b) is a factor of p(x)  then p(a)= 0 & p(b) = 0.

 ---------------------------------------------------------------------------------------------------

 

Solution:

If (x+1) (x+2) (x-3)is a factor of given polynomial say p(X) , then at x= -1, x= -2, x= 3, p(x)  will become zero, otherwise it is not a factor of given polynomial.


 

i) If g(x) = x + 1 is a factor of given polynomial p(x), 

p(- 1) must be zero.

p(x) = 2x³+x² -2x – 1
p(- 1) = 2(-1)3 + (-1)2 – 2(-1) – 1

= 2(- 1) + 1 + 2 – 1 = 0

Hence, g(x)= x + 1 is a factor of given polynomial.

 

 

(ii) If g(x) = x + 2 is a factor of given polynomial p(x), p(- 2) must be 0.

 


p(x) =x³+3x²+ 3x + 1
p(-2) =(-2)³+3(-2)²+3(-2) + 1

= -8 + 12 – 6 + 1
= -1

As, p(-2) ≠ 0

 

Hence g(x) = x + 2 is not a factor of given polynomial.

 


(iii) If g(x) = x – 3 is a factor of given polynomial p(x), p(3) must be 0.


p(x) = x3 – 4x2 + x + 6
p(3) = (3)3 – 4(3)2 + 3 + 6

= 27 – 36 + 9 = 0

Hence, g(x) = x – 3 is a factor of given

polynomial.

 

 =========================================================

Similar questions