Math, asked by BrainlyHelper, 1 year ago

"Question 3 Find the value of k, if x − 1 is a factor of p(x) in each of the following cases:
(i) p(x) = x^2 + x + k
(ii) p(x) = 2x^2 + kx + 2^(1/2)
(iii) p(x) = kx^2 - 2^(1/2) x + 1
(iv) p(x) = kx^2 − 3x + k

Class 9 - Math - Polynomials Page 44"

Answers

Answered by nikitasingh79
9

Solution;

i) If x – 1 is a factor of polynomial p(x) = x²+ x + k, then

p(1) = 0

On putting X= 1


 (1)² + 1 + k = 0
 2 + k = 0
 k = – 2

Hence, the value of k is -2.

 


(ii) If x – 1 is a factor of polynomial p(x) = 2x
² + kx +  √2, then
p(1) = 0

On putting x= 1
2(1)² + k(1) + √2 = 0
 2 + k + √2 = 0
 k = -2 – √2 

K= -(2 + √2)

Therefore, value of k is -(2 + √2).


(iii) If x – 1 is a factor of polynomial p(x) = kx
² – √2x + 1, then
p(1) = 0

On putting x= 1
 k(1)²– √2(1) + 1 = 0
 k – √2 + 1 = 0
 k = √2 – 1

Hence, the value of k is √2 – 1.


(iv) If x – 1 is a factor of polynomial p(x) = kx
² – 3x + k, then
p(1) = 0

 

On putting x= 1
 k(1)² + 3(1) + k = 0
 k – 3 + k = 0
2k – 3 = 0
 k = 3/2

 

Hence, the value of k = 3/2.

 

 =========================================================

Answered by Anonymous
6
dear, I m sorry! because of the image, image is not clear so please if you don't understand my image then you can ask me I will tell you
Attachments:
Similar questions