"Question 4 In the given figure, if lines PQ and RS intersect at point T, such that ∠PRT = 40º, ∠RPT = 95º and ∠TSQ = 75º, find ∠SQT.
Class 9 - Math - Lines and Angles Page 107"
Attachments:
Answers
Answered by
171
Vertically opposite angles:
When two line intersect each other at a point then there are two pairs of vertically opposite angles.
_____________________________________________________________
Solution:
Given: ∠PRT= 40°, ∠RPT=95°, ∠TSQ=75°
In △PRT,
∠PTR+∠PRT+∠RPT=180°
[sum of interior angles of a triangle is 180°].
⇒∠PTR+40∘+95∘=180∘
⇒∠PTR+135∘=180∘ ⇒∠PTR=180∘−135∘
⇒∠PTR=45∘
⇒∠QTR=∠PTR=45∘
(vertically opposite angles)
In △TSQ,
∠QTS+∠TSQ+∠SQT=180∘
[sum of interior angles of a triangle is 180∘].
45∘+75∘+∠SQT=180∘ ⇒120∘+∠SQT=180∘
⇒∠SQT=180∘−120∘
⇒∠SQT=60∘
Hence, ∠SQT=60∘
======================= ==================================
Answered by
133
yess, in∆PRT ,
<PTR+<PRT+<RPT= 180°
( °.° a triangles all three angles equal is 180° )
=> <PTR+40°+95°=180°
=> <PTR = 180°-135° = 45°
=> < QTS=<PTR = 45° ( Opposite angle )
in ∆TSQ
<QTS+<TSQ+<SQT=180°
=> 45°+75°+<SQT=180°
=> 120°+ <SQT= 180°
=> <SQT= 180°-120°= 60°
hopes I helped
<PTR+<PRT+<RPT= 180°
( °.° a triangles all three angles equal is 180° )
=> <PTR+40°+95°=180°
=> <PTR = 180°-135° = 45°
=> < QTS=<PTR = 45° ( Opposite angle )
in ∆TSQ
<QTS+<TSQ+<SQT=180°
=> 45°+75°+<SQT=180°
=> 120°+ <SQT= 180°
=> <SQT= 180°-120°= 60°
hopes I helped
Similar questions