Math, asked by BrainlyHelper, 1 year ago

"Question 5 Show that (i) (3x + 7)^2 − 84x = (3x − 7)^2 (ii) (9p − 5q)^2 + 180pq = (9p + 5q)^2 (iii) (iv) (4pq + 3q)^2 − (4pq − 3q)^2 = 48pq^2 (v) (a − b) (a + b) + (b − c) (b + c) + (c − a) (c + a) = 0

Class 8 Algebraic Expressions and Identities Page 151"

Answers

Answered by nikitasingh79
11

An identity is true only for certain values of its variables. An equation is not an identity.

The following are the identities

(a + b)² = a² + 2ab + b² 
(a – b)² = a² – 2ab + b² 
(a – b)(a + b) = a² – b²

 Another useful identity is

 (x + a) (x + b) = x² + (a + b) x + ab

If the given expression is the difference of two squares we use the formula

a² –b² = (a+b)(a-b)

 

• The above four identities are useful in carrying out squares and products of algebraic expressions. They also allow easy alternative methods to calculate products of numbers and so on.

==========================================================

Solution:


1) (3x + 7)² – 84x = (3x – 7)²

LHS = (3x)²+2×3x×7+(7)²-84x

9x² + 42x + 49 - 84x

9x² + 42x  - 84x+49

= 9x² - 42x + 49


RHS = (3x)²-2×3x×7+(7)²

 9x² - 42x + 49


LHS = RHS


2)  (9p – 5q)²+ 180pq = (9p + 5q)²

LHS =(9p – 5q)²+ 180pq

(9p)²-2×9p×5q+(5q)²

 = 81p² - 90pq + 25q² + 180pq
= 81p² - 90pq  + 180pq + 25q²

= 81p² + 90pq  + 25q²

RHS = (9p + 5q)²

(9p)²+2×9p×5q+(5q)²

81p² + 90pq + 25q²

LHS = RHS

 


4)  LHS (4pq + 3q)²– (4pq – 3q)²

(4pq)²+2×4pq×3q+(3q)² - ((4pq)²- 2×4pq×3q+(3q)²)

= 16p²q²+ 24pq²+ 9q² - 16p²q² + 24pq² - 9q²


= 48pq²

RHS= 48pq²

LHS = RHS

 


5) LHS= (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a) = 0

a² - b² + b² - c² + c² - a²
= 0

RHS= 0

LHS= RHS

==========================================================

Hope this will help you.....

Similar questions