Math, asked by BrainlyHelper, 1 year ago

"Question 6 Using identities, evaluate. (i) 71^2 (ii) 99^2 (iii) 102^2 (iv) 998^2 (v) (5.2)^2 (vi) 297 × 303 (vii) 78 × 82 (viii) 8.9^2 (ix) 1.05 × 9.5

Class 8 Algebraic Expressions and Identities Page 152"

Answers

Answered by nikitasingh79
147

An identity is true only for certain values of its variables. An equation is not an identity.

The following are the identities

(a + b)² = a² + 2ab + b² 
(a – b)² = a² – 2ab + b² 
(a – b)(a + b) = a² – b²

 Another useful identity is

 (x + a) (x + b) = x² + (a + b) x + ab

If the given expression is the difference of two squares we use the formula

a² –b² = (a+b)(a-b)

 

• The above four identities are useful in carrying out squares and products of algebraic expressions. They also allow easy alternative methods to calculate products of numbers and so on.

==========================================================

Solution:


1) 71²

= (70+1)²
= 70²+ 2×70×1+ 1²               [(a + b)² = a² + 2ab + b² ]


= 4900 + 140 +1

= 5041


2) 99²
= (100 -1)²
= 100²- 2×100×1 + 1²               [(a – b)² = a² – 2ab + b² ]
= 10000 - 200 + 1


= 9801


3) 102²= (100 + 2)²
= 100²+ 2×100 ×2+ 2²            [(a + b)² = a² + 2ab + b² ]
= 10000 + 400 + 4


= 10404

4) 998²= (1000 - 2)²
= 1000² - 2×1000×2 + 2²                         [(a – b)² = a² – 2ab + b² ]
= 1000000 - 4000 + 4


= 996004


5) 5.2²= (5 + 0.2)²
= 5² + 2×5×0.2 + 0.2²                [(a + b)² = a² + 2ab + b² ]
= 25 + 2 + 0.04


= 27.04


6) = (300 - 3 )(300 + 3)
= 300²- 3²
= 90000 - 9


= 89991

7) = (80 - 2)(80 + 2)
= 80² - 2²                                   [(a – b)(a + b) = a² – b²]
= 6400 - 4


= 6396


8) 8.9²= (9 - 0.1)²
= 9² - 2×9×0.1 + 0.1²                   [ [(a – b)² = a² – 2ab + b² ]]
= 81 - 1.8 + 0.01


= 79.21


9) 

1.05 × 9.5


1.05 × .95 x 10

= (1+ 0.05)(1 - 0.05) x10             [(a – b)(a + b) = a² – b²[

= [1² - 0.05²] x 10


= [1 - 0.0025] x10


= 0.9975 x 10

= 9.975

==========================================================

Hope this will help you.....

Answered by harshchoudharyhc77
10

Answer:

does everyone to do so woo so hairs so woo hoo I am not sure what to think in the morning

Similar questions