Math, asked by harika03, 9 days ago

Question 7 A triangle with sides AB = 6, BC = 5, CA= 6. Find Cos A

Answers

Answered by shravangoud23500
0

Answer:

1

Step-by-step explanation:

cos A= adjecent/hypotenuse

so cosA=AB/CA

AB=6 CA=6

THEN cosA=6/6=1

Answered by dikshaagarwal4442
1

Answer:

The value of cos A = 0.83.

Step-by-step explanation:

  • In this triangle two arms are equal and they are AB and CA. (AB = CA = 6).

        So their opposite angles will be equal (∠B = ∠C)

  • The opposite angle of side AB is ∠C

        The opposite angle of side BC is ∠A

         The opposite angle of side CA is ∠B

  • From the law of sin, we get: \frac{AB}{sin C} = \frac{BC}{sin A} = \frac{CA}{sin B}

       AB = CA = 6, BC = 5, sin B = sin C as ∠B = ∠C

     The above formula can be written as, \frac{BC}{sin A} = \frac{CA}{sin B}

                                                                    \frac{5}{sin A} = \frac{6}{sin B}    or, 5sinB = 6sinA

      In a triangle sum of all angles = 180°, so ∠A + ∠B + ∠C = 180°

                                                                          ∠A + 2∠B = 180°

                                                                          2∠B = 180° - ∠A

                                                                          ∠B = 90° - ∠\frac{A}{2}

Putting the value of ∠B in above equation,

 5sin(90° - ∠\frac{A}{2}) = 6sinA

 5cos(∠\frac{A}{2}) = 6(2sin\frac{A}{2} cos\frac{A}{2})  [as sin(90°-x) = cosx and 2sinacosa= sin2a]

  5 = 12sin\frac{A}{2}           or, sin\frac{A}{2} = 5/12      or, sin²\frac{A}{2} = 25/144

  • As we know, cos2a = 1 - 2sin²a

                             So, cosA = 1 - 2sin²\frac{A}{2}

                                            = 1 - 25/144 = 119/144 = 0.83

∴ The value of cos A = 0.83

To know more about the triangle visit the link below:

https://brainly.in/question/21755428

https://brainly.in/question/12199661

Similar questions